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Abstract. Learned latent vector representations are key to the success of many
recommender systems in recent years. However, traditional approaches like matrix
factorization produce vector representations that capture global distributions of a
static recommendation scenario only. Such latent user or item representations do
not capture background knowledge and are not customized to a concrete situational
context and the sequential history of events leading up to it.

This is a fundamentally limiting restriction for many tasks and applications, since
the latent state can depend on a) abstract background information, b) the current
situational context and c) the history of related observations. An illustrating exam-
ple is a restaurant recommendation scenario, where a user’s assessment of the sit-
uation depends a) on taxonomical information regarding the type of cuisine, b) on
situational factors like time of day, weather or location and c) on the subjective in-
dividual history and experience of this user in preceding situations. This situation-
specific internal state of the user is not captured when using a traditional collabo-
rative filtering approach, since background knowledge, the situational context and
the sequential nature of an individual’s history cannot easily be represented in the
matrix.

In this paper, we investigate how well state-of-the-art approaches do exploit those
different dimensions relevant to POI recommendation tasks. Naturally, we repre-
sent such a scenario as a temporal knowledge graph and compare plain knowledge
graph, a taxonomy and a hypergraph embedding approach, as well as a recurrent
neural network architecture to exploit the different context-dimensions of such rich
information. Our empirical evidence indicates that the situational context is most
crucial to the prediction performance, while the taxonomical and sequential infor-
mation are harder to exploit. However, they still have their specific merits depend-
ing on the situation.
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1. Introduction

Recommender systems are a mature field in research and engineering. They have been
applied in many diverse applications and the approaches and data sources used are
equally diverse. Typically, specialized representation formalisms and methods are de-
vised and optimized to exploit the specific information best. However, several applica-
tions of recommender systems in real world scenarios are faced with other challenges
that should be considered in order to provide good recommendations. One factor is the
consideration of context like location, time, etc. [1]. Another challenge is to deal with
complex environments that are subject to greater variability and complexity of inputs to
recommender systems rather than simple ratings or reviews. In some cases, the infor-
mation structure that serves for recommendations is so complex that it is represented by
a semantic model as a knowledge graph [2]. Similarly, some applications require more
complex outputs than prioritized recommendation lists in the direction of composite or
sequential recommendations.

We describe details of a concrete in-use application of a mobile location-based rec-
ommender system that makes use of semantic technologies for representing the com-
plex information structure as well as for user information obtained from a social net-
work. In this paper, we investigate three dimensions that provide additional information:
a) symbolic background knowledge, b) situation-specific information and c) sequential
information.

One illustrating example is a POI recommendation scenario, where a user’s assess-
ment of a situation depends on his preferences for a certain type of cuisines, situational
factors like time of day, weather or location and on the subjective individual history and
experience of this user in previous situations. For instance, a restaurant shouldn’t be of
interest to a user who just had something to eat.

An intuitive way of representing all this heterogeneous types of information are tem-
poral knowledge hyper graphs that contain time-stamped hyper-edges to allow the ex-
traction of the sequential history of previous interactions of a user in similar recommen-
dation settings. Hereby, each concrete setting is accompanied by a list of contextual fac-
tors that are best modelled as an n-ary relation between the user and the recommenda-
tion target. Also, each entity is accompanied by symbolic background knowledge like
taxonomical relations.

Knowledge Graph Embeddings (KGE) are a recent technique to transform such sym-
bolic knowledge into predictive models, which operate on latent vector spaces. However,
most current KGE methods produce exactly one embedding for each entity instance and
relation type specified in a static Knowledge Graph (KG). Each embedding captures the
global distributional semantic of the graph from the perspective of this entity or relation.
This does not fit well to context-aware recommender systems.

In this paper, we test the hypothesis that a global KGE per entity and relation is not
adequate for many recommendation tasks. Consequently, there is a need to customize
static KGEs to situational and subjective contexts. More precisely we argue that most
KGE models cannot generate embeddings that capture the current relational context and
that contain the abstract conceptual background information as well as the subject’s his-
tory of related observations.

Thus, we test different techniques to incorporate three dimensions of additional in-
formation: a) An ontology describing POIs for symbolic background knowledge, b) n-
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ary relations for capturing situation-specific information and c) sequential information
about an individual’s previous history.

Given such a formalization of contextualized observations over time, our goal is
to learn embeddings that go beyond binary pre-trained KGEs by taking into account
an ontology and the sequential history of contextualizing factors. We attempt that by a
hypergraph- and a taxonomy embedding technique and recurrent neural networks. We
make the following contributions:

• We propose a formal ontology for modeling abstract background knowledge in
recommenation scenarios (addressing dimension a) and feed it into Knowledge
Graph Embedding (KGE) methods.

• We apply a hypergraph embedding approach to include the situational context
(addressing dimension b).

• We model the temporal context of an individual with a recurrent neural network
• We evaluate these methods on a context aware POI recommendation task to gain

insights for the individual benefits of the dimensions to the recommendation per-
formance.

2. Related Work

In this section we first survey previous work on the task of POI recommendation. Some
more recent approaches rely on knowledge graph embeddings, which we also do in this
work. Consequently, we discuss the fundamentals related to this area in more detail next.

2.1. Recommender Systems for Location Based Social Networks

Context information is particularly important for location based recommender systems
where context like location, time, weather, or trip purpose has a large influence on the
POI to recommend. Recommender systems based on location based social networks
(LBSN) have been the subject of intensive recent research activities, see [3,4] for re-
cent surveys. In-vehicle recommender systems provide even more context information
such as vehicle sensor based information about occupants and driver, vehicle state, or
surrounding traffic [5].

An early approach for POI recommendation based on models for human mobility
and their dynamics in social networks is described in [6]. Another early approach for
context-aware recommendation that considers social network information, personal pref-
erences and POI popularity is presented in [7]. Nousal et al. [8] analysed simple mea-
sures such as popularity, category preference, temporal preference, social filtering, with
supervised learning using linear regression model or decision trees for next place pre-
diction. Baral et al. [9] propose a hierarchical contextual POI sequence recommender
that formulates user preferences as hierarchical structure and exploits contextual trend to
generate personalized POI sequences. Those works are method-wise not directly related
to our approach, which is focused on knowledge graph embedding methods.

An approach presented by Baral et al. [10] describes a contextualized location se-
quence recommender that generates contextually coherent POI sequences relevant to user
preferences exploiting recurrent neural networks (RNN) and extended Long-short term
memory (LSTM) networks. A method based on matrix factorization to embed personal-
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ized Markov chains and localized regions for successive personalized POI recommenda-
tion is used in [11]. Feng et al. [12] propose a personalized ranking metric embedding
method (PRME) which jointly models the sequential information and individual prefer-
ences. A fourth-order tensor factorization-based ranking methodology that captures long-
and short term preferences simultaneously has been reported in [13]. We also investigate
methods in this directions by using an LSTM-based approach in one of our experiments.

Even more closely related to methods investigated in this paper is a knowledge graph
embedding method that learns semantic representations of both entities and paths be-
tween entities for characterizing user preferences described in [14]. Another knowledge
graph embedding based approach [15] jointly captures the sequential effect, geograph-
ical influence, temporal effect and semantic effect by embedding four corresponding
knowledge graphs (POI-POI, POI-Region, POI-Time and POI-Word) into a shared low-
dimensional space. A state-of-the-art deep learning recommendation model has been re-
ported in [16]. Categorical features are represented by an embedding vector, generalizing
the concept of latent factors used in matrix factorization. A Spatial-Aware Hierarchical
Collaborative Deep Learning model (SH-CDL) that jointly performs deep representa-
tion learning for POIs from heterogeneous features and hierarchically additive represen-
tation learning for spatial-aware personal preferences is presented in [17]. [18] propose
LBSN2Vec, a hyper graph embedding approach designed specifically for LBSN data
which we also use in our experiments.

2.2. Knowledge Graph Embedding

In recent years, Knowledge Graph Embedding (KGE) has been a very vibrant field in
Machine Learning and Semantic Technologies, specifically in the area of Representation
Learning (see [19] for a survey). Numerous methods for embedding knowledge graphs
have been proposed and even more adaptations have been published. KGE methods can
be roughly characterized by the representation space and the scoring function.

The vector representations of entities and relations are traditionally Euclidean R
d ,

but many different spaces like Complex C
d (e.g., in [20]) or Hypercomplex H

d (cmp.
[21]) have been used as well.

Standard KGE methods don’t take into account temporal information or contextual
factors that influence the plausibility of a fact. However, there have been attempts to
address each limitation, as outlined next.

2.3. Contextual Knowledge Graph Embeddings

From the Knowledge Graph perspective, hypergraphs with n-ary relations and hyper-
relational graphs with meta information encoded on the relations are exploited for mod-
eling the context. Such approaches from Statistical Relational Learning are based on
graphical models and tensor factorization [22]. A more recent approach extends the cur-
rent KGE method SimplE [23] to hypergraphs [24] but does not take into account tem-
poral or sequential information. This approach was used as the basis for our hypergraph
embedding experiments. More details on our adaptions can be found in section 4.2.

Embedding temporal dynamics of a knowledge graph and thus tackling (Lim2) has
received much attention recently. Knowledge graphs in which facts only hold within a
specific period and where the evolution of facts follows a sequence have become in-
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creasingly available. This also increased the interest in learning embeddings that take the
temporal information into account.

Basic approaches to temporal KGE model facts as temporal quadruples. They are
optimized for scoring the plausibility of (unkown) facts at a given point in time [25],
[26]. A more sophisticated approach is proposed in [27]. It even checks the temporal
consistency given contextual relations of the subject and object. Besides the inability
of those models to model n-ary sequential context, we are also taking a different focus
by using the temporal dimension to model the history of experiences of a subject. A
more entity-centric perspective is taken in [28], which attempts to model the temporal
evolution of entities, where [29] take a relation-specific perspective instead. Similar to
our approach, [30] proposes an LSTM-based approach, which exploits relation-specific
embedding of entities.

3. Capturing Taxonomical, Contextual and Sequential Information for

Recommendations

The goal of this paper is to investigate the potential of three different types of informa-
tion, namely taxonomical, contextual and sequential, for their use in embedding-based
recommender systems. We chose a knowledge graph as the underlying data structure,
since it allows to include all those information types in one representation formalism. We
first show how to model taxonomical information, before including situational context
and the sequential history.

3.1. Modeling Taxonomical Information

This section describes the POI Categories (POICa) ontology used for representing infor-
mation about POIs mainly by exploiting their hierarchical relationships.

3.1.1. Conceptualizing and Formalizing

The main objective of the POICa ontology is focused on representing: 1) taxonomic
knowledge, encoding hierarchical information between different POIs, and 2) auxiliary
knowledge, which comprises information for a specific check-in of a user in a particular
POI including geo-spatial and temporal data, i.e. the location of the POI and the times-
tamp information about the check-in action. The underlying structure of the POICa on-
tology is built on top of Foursquare Categories2 where the core concept is the POI. Sev-
eral object and datatype properties describe a particular POI with respect to its attributes
and relationships with other concepts.

As depicted in Figure 1, POICa ontology comprises a number of subcategories dis-
tributed in various levels, which for the sake of better readability are highlighted with
different colors. The first level under the POI concept includes subcategories described
in the following:

• Art and Entertainment - is the category for representing places related to art, cul-
ture, music, exhibitions, etc.

2https://developer.foursquare.com/docs/build-with-foursquare/categories
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(a) POICa-breadth view. (b) POICa-depth view.

Figure 1. POICa ontology. Main concepts representing different categories within the ontology: a) depicts
all categories within the first level of the hierarchy including some important ones from the second level; b)
depicts depth of a particular category i.e. Restaurant.

• Education - are entities which provide education-related services and learning en-
vironments.

• Professional Places - groups places which are involved or perform business activ-
ities.

• Outdoors and Recreation - are places where the recreation is commonly realized
in natural settings.

• Residence - used to group POIs that mainly serves as living places.
• Restaurant - groups all types of restaurants split on various criteria, such as cui-

sine.
• Shop and Service - used to group POIs which are dedicated for selling goods or

services.
• Transportation - containing POIs which enable carrying of people and goods from

one place to another.

Each of these subcategories is further specialized utilizing subClassOf axiom in or-
der to provide a detailed classification based on the shared characteristics, such as the
type of the activity they perform combining with regional information. Several additional
classes such EthnicRestaurant, SiteBasedRestaurant, SpecializedFoodRestaurant are in-
troduced with the aim of grouping restaurants based on ethnicity or cuisine, style and
flavour, respectively.

3.1.2. Alignment with and reuse of external ontologies

In order to ensure interoperability with other information from different sources, we
reused a number of concepts from external ontologies such as Schema.org, FOAF, DB-
pedia, DCTerms and Weather3. For instance, in order to represent geo-spatial informa-
tion for a given POI the following concepts from DCTerms, Schema.org and DBpedia:
dct:Location, schema:PostalAddress and dbo:City are reused.

3https://schema.org/, http://xmlns.com/foaf/0.1/, http://dbpedia.org/ontology#,
http://purl.org/dc/terms/, https://cutt.ly/QhQrFxv#
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Figure 2. HypE architecture with scoring function
.

The current version of the POICa ontology contains 953 classes, 8 object properties,
12 datatype properties and 4 annotation properties. In this paper, our focus was to de-
scribe the core concepts that form the basis to understand the conducted work from the
taxonomic point of view.

3.2. Context-aware Hypergraph-Embeddings

In traditional user-item-recommender systems, there is only one binary relation indi-
cating which user interacted with which item. However, this cannot capture the multi-
relational background knowledge described above and also cannot include situational
context that describes the conditions when and how this interaction took place.

Thus, representing recommendation scenarios by only using binary relations can
cause an information loss that might lead to poor performance on a recommendation
task. To make full use of all the contextual information like day of the week and current
time, that are contained in the dataset, the binary relations need to be extended to n-ary
relations.

We therefore build on HypE [24], a recently introduced hypergraph embedding ap-
proach that showed promising results on other tasks and allows for easy adaption to our
recommendation use-case. HypE uses a multilinear scoring function and additionally
uses learnt convolutional filters to model the different importance of entities in different
relations.

The recommendation itself is made through computation of a score, given n entities
(depending on the arity of the relation) and the relation. As an example, given a context
(i.e. the weather, day, time, proximity), all potential POIs can be ranked by computing
the score for each and choosing the POI with the highest score as the recommendation.
The scoring function of HypE is defined as φ(r(e1, ...e|r|)), and describes the sum of the
element-wise product of the corresponding embedding vectors (cmp. Fig. 2).

3.3. Sequence-aware Recurrent Neural Nets

Having access to the full information and relying on a system that is constantly learning
from new data is often an unrealistic assumption. Common issues are:

Cold start: In many situations the system encounters a new user or can’t identify the
current user and thus does not have access to the user’s history and preferences.

Missing context: Often the full context of the recommendation situation is not available.
The system still has to produce a recommendation without contextual factors.

Online Machine Learning: Most machine learning methods learn from (mini-) batches
and can’t be re-trained after each new data point arrives.
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Figure 3. The architecture of the LSTM approach
.

A more realistic scenario is that a large data set of a LBSN is available for off-line
training, but recommendations still have to be generated for new users without contex-
tual information. Based on the assumption that a user chooses a POI not only based on
contextual information, but also based on the last POI he visited, a personalized recom-
mendation might even be possible for short individual histories.

For example, this captures that a user would typically not visit a restaurant right after
returning from lunch and therefore should also not be recommended doing so.

To capture the sequential nature of such a scenario, we propose to use an LSTM
network [31] that receives a sequence of check-ins without additional contextual infor-
mation as input and predicts the next location in the sequence. We use the off-line trained
HypE-Embeddings of the locations as our POI representations and minimize a Cross-
Entropy-Loss to learn the next location in the sequence. As a proof-of-concept, we chose
a simple network architecture, using an LSTM layer for modelling the sequential infor-
mation followed by a fully connected layer for the prediction (see Fig. 3).

4. Experimental Setup and Results

The following section describes the experiments on POI recommendation based on the
knowledge graphs described in the previous sections. We use two data sets that were in-
troduced in a different knowledge graph embedding approach [18] for a POI recommen-
dation scenario and use the reported hit@10 value from the same paper as a baseline to
compare our results to. The experiments can be divided into three different sets of runs:

• Prediction based on binary KGE approaches [32]
• Prediction based on a hypergraph approach [24]
• Prediction based on sequential modelling

The first type of experiments were run on existing implementations4 that were adapted
for a more convenient usage without altering the core of the implementations. For the
third set of experiments, we used a simple LSTM network that receives a sequence of
visited POIs as input and outputs a prediction of the next POI in the sequence. The com-

4https://github.com/thunlp/OpenKE
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bined approach was built using HypE5. Our implementation and experimental settings
can be found in the repository6 on GitHub.

The datasets in use consist of 104,997 and 376,077 data points, which represent the
check-ins at locations in New York City and Jakarta over the course of two years. The
larger Jakarta set contains 8,805 distinct POIs and 6,183 distinct users, while the NYC
set contains 3,626 distinct POIs and 3,573 users. Since the original data represents a
hypergraph, it had to be adjusted for usage with binary relations. The information loss in
this procedure led to smaller datasets for the binary KGE approaches in comparison to
the hypergraph approach. To make sure that the results are still comparable, splitting the
data into test, validation and training set was the first step in data preparation, before the
data was prepared for usage in the different settings.

As the results, we report the ’filtered’ values for the binary and ’raw’ values for the
n-ary approaches. The filtered setting counts a “hit” as long as the the predicted value is
an element of the ground truth, whereas the raw setting only considers the current sample
value as a true result. In the third case (LSTM), we report the raw setting only, because
we only want to model the sequential behaviour and therefore only consider a “hit” when
the exact POI for this sequence is recommended.

4.1. Binary knowledge graph-embedding approaches

The first task was limited to represent the data as triples, consisting of subject, predicate
and object. As there is no relation information that we can directly take from the origi-
nal data, we introduced two different relations which we considered to be carrying most
information. The first relation is checksIn(user, POI) and the second one is typeOf(POI,
category). For the setting that incorporates the ontological data, we introduced an addi-
tional relation subclassOf(category, category) which is only present in the training data
and is meant to provide further information for the recommendation task.

Based on the available implementations we conducted a series of experiments us-
ing a large variety of binary KGE approaches, including Complex[20], Distmult[33],
Hole[34], Simple[23] and Transe[35]. As for the parameter settings, we tested across dif-
ferent embedding dimensions and left the other options to default values. We only report
the best results for each method.

4.2. Knowledge hypergraph embedding

In preparation for the HypE approach, we defined one relation checksIn(user, hour of
day, day of week, type, location) to represent the data. The hour of day and the day
of week are derived from the timestamps in the original data. To achieve the results
presented in table 2, we used a slightly different implementation of the HypE approach.
The scoring function including the convolutions is still the same, but we made a few
adaptions for faster runs on our dataset. We also slightly altered the training objective;
instead of scoring against a fixed number of negative samples, we always scored against
all possible locations. We only consider the ’raw’ setting for evaluation.

For integration of background knowledge we implemented a model that combines
the HypE approach for n-ary relations together with a binary approach (TransE) to em-

5https://github.com/ElementAI/HypE
6https://github.com/siwer/TaxonomicalKGE
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bed the ontological information. The underlying idea is that the ontological information
(in this case the POI categories) will be embedded in their own ontology space, while the
other information (users, locations, etc.) will be embedded in a separate space. A trans-
lation layer (implemented as a feed-forward layer) learns to project from the ontology
space to the general feature space. Algorithm 1 below shows the training procedure of
our approach. We implemented a hyperparamer λ to control the influence of the ontolog-
ical information during training. The training objectives are now to predict the location
given (user, type, time, day) and to predict the superclass of a type given the provided
ontology. For evaluation we still only consider the location prediction task. Across all
experimental runs in different configurations, the results with λ > 0 outperformed the
ones where λ = 0. Table 1 shows an example of the influence of λ on the training for
both NYC and JAK data. The results shown there are averaged over runs with varying
ontology space dimension (130,75,50,25). The general entity space dimension is fixed at
130 over those runs. As indicated by our empirical results, the most beneficial values for
λ lie between 0.2 and 0.8. This behaviour is also consistent across the other observed
metrics. In table 2, the ’+ Ont’ approaches denote λ > 0 for the HypE approach. As with
the binary approaches, we also present the results from the best runs.

Lambda 0.0 0.2 0.4 0.6 0.8 1.0 Params

MR 23.66 20.67 21.76 20.95 21.06 20.90 NYC, lr = 0.01

MR 21.48 20.25 20.24 20.38 19.98 20.07 NYC, lr = 0.005

MR 21.73 20.52 19.60 20.18 19.55 20.21 JAK, lr = 0.01

MR 17.22 16.43 15.76 15.93 16.05 15.88 JAK, lr = 0.005

Table 1. Influence of Lambda on MR

Algorithm 1 Training of the combined approach

Input: batch, weightFactor = λ
typeVector = ontologySpaceΘ(type);
entityVectors = entitySpaceΘ(user, time,day);
relationVectors = relationSpaceΘ(checkinRelation,subClassRelation);
for all i in types do

ontologyScores ← φtransE(type,subClassO f , typesi);
end for

translatedType = TranslationLayerΘ(type);
for all i in locations do

locScores ← φhypE(checkin,user, translatedType,day, time, locationsi);
end for

lossOntology = crossEntropy(ontologyScores,superType);
lossLocation = crossEntropy(locScores, location);
combinedLoss = lossLocation+(λ ∗ lossOntology);
Θ ← update(Θ,backProp(combinedLoss));
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Approach Jakarta Jakarta + Ont EmbDim NYC NYC + Ont EmbDim

LBSN2Vec [18] 0.08 - 128 0.11 - 128

Complex 0.041 0.040 100 0.033 0.032 100

Distmult 0.045 0.045 150 0.035 0.039 100

HolE 0.031 0.030 100 0.024 0.023 100

SimplE 0.047 0.046 100 0.035 0.036 100

TransE 0.064 0.064 200 0.044 0.045 150

HypE 0.742 0.771 130/50 0.722 0.738 130/25

LSTM 0.085 - 100 0.080 - 100
Table 2. Best hits@10 results for different approaches with the corresponding embedding dimensions. For
the KGE approaches, also results for adding information modeled in the POICa ontology (see Sec. 3.1) are
reported.

4.3. LSTM-based Sequence-aware Recommendations

As the basis for experiments with the LSTM network, we use the location embeddings
that were acquired in the experiments from the section above. Thus, some global contex-
tual information is captured in the embeddings, however, the LSTM is not aware of any
situational context, nor of the personalized history of the user, beyond a few previous
check-ins. We chose the best performing HypE models for both datasets to provide the
location representations.

Since sequential information is used, the original data had to be transformed to rep-
resent the check-in sequence(s) of a user. The extreme case would be assuming one se-
quence per user, i.e. taking all interactions of one user and transform it into a discrete
sequence of check-ins. This, however, is not an assumption that would reflect real-word
behaviour, because it is unlikely that a location which a user visited a month ago would
influence a decision of today. To capture this, we assumed a new sequence after 6 hours
passed between two check-ins. As a result, there are now 12,781 sequences in the NYC
training set and 1,605 sequences in the NYC test set (For Jakarta: 56,670 and 5,319).
Therefore, we consider at least two check-ins within a 6 hour window as a sequence. The
choice of the duration after which a new sequence is assumed has a large influence on
the final training data. A window of 24 hours would lead to fewer, but longer sequences,
while a 4 hour window would yield more very short sequences. To ensure the relatedness
of check-ins in the sequences, a shorter window is favorable, although at the cost of hav-
ing shorter sequences. In the end, around 70% of the obtained sequences had a length of
2. Since we are interested in testing the performance also for cold start problems this is
a suitable setup.

We modelled the neural network architecture as a classification problem, where the
last hidden state of the LSTM is used as the input for the classification feed-forward
layer. Due to the different dataset sizes, the NYC set has 3,626 classes (distinct locations)
and the Jakarta set has 8,805 classes.

4.4. Discussion of results

Table 2 provides an overview of the best hits@10 results for each setup described above.
First, the results reported in [18] are shown for comparison. Then, results of all binary
KGE methods are reported and compared to when information from the POICa ontol-
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ogy is added. Throughout all experiments, the ontological information didn’t make a sig-
nificant difference. This is likely due to the naive way of introducing just the relational
information from the ontology into the graph, without considering their semantics, like
that of a taxonomical relation. Apparently, this adds more complexity than it provides
valuable learning signals. We assume that a more sophisticated approach to exploit the
ontology, as done in the HypE approach, can improve the results considerably.

All binary KGE approaches clearly show an inferior performance to LBSN2Vec.
This is likely due to their inability to exploit contextual information. This observation
becomes clear when looking at the HypE results. Like LBSN2Vec, HypE does exploit
n-ary relation and thus the full situational context, however, their embedding techniques
are fundamentally different. HypE’s results are a quantum leap when compared to any
other approach we tested. Since HypE is based on years of KGE research and optimized
for use-cases with rich situational context an improvement was expected, but this extend
was still surprising. As opposed to the naive approach of just adding the taxonomical
information to the training data, the approach of jointly training embeddings for the pre-
diction task and the ontology yielded a measurable increase in prediction performance.

Finally, the LSTM results based on sequential information show that its performance
is below LBSN2Vec, specifically for the NYC data set. It is still noteworthy that such a
result is obtained after only seeing one previous POI check-in without additional user-
specific or contextual information. On the one hand, this seems reasonable since the POI
embeddings from HypE are used as input and thus some global context of each POI is
provided to the LSTM. On the other hand, there seems to be a valuable signal in the
previously visited POI, that is not exploited by the other methods.

5. Conclusions and Future Work

In this paper, we obtained empirical evidence for how well state-of-the-art latent recom-
mendation approaches can exploit ontological, situational and sequential information in
a POI recommendation task. Our empirical evidence indicates that the situational con-
text is most crucial to the prediction performance, while the taxonomical and sequen-
tial information are harder to exploit. As we have shown with the experiments based on
HypE, a beneficial exploitation of ontological information requires a more sophisticated
approach than just augmenting the knowledge graph with relations from the ontology.
In our approach, we learn an additional dedicated ontology embedding space and train
a translation layer to fuse both spaces. Besides of our approach, materializing implicit
knowledge or deducing additional positive and negative training data might be another
step in this direction. The LSTM approach seems to be an interesting option for cold
start scenarios or whenever online learning is computationally not feasible. Also, this
approach only initially requires KGE embeddings trained on the full information. Then
it can be trained on sequence information only, without situational context, and applied
to novel sequences of unknown users, again without situational context. Summing up,
this work shows that the different dimensions each provide separate benefits, but exploit-
ing all of them is non-trivial. Thus, promising future steps with great potential are meth-
ods for a tight integration of expressive formal ontologies with latent machine learning
as well as deep learning architectures for a joined embedding of multi-ary knowledge
graphs with sequential information.
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