
When is the Peak Performance Reached? An
Analysis of RDF Triple Stores

Hashim Khan1, Manzoor Ali1, Axel-Cyrille Ngonga Ngomo1, and Muhammad
Saleem1,2

1 DICE, Paderborn University, Germany
hashim.khan@uni-paderborn.de

manzoor@campus.uni-paderborn.de
axel.ngonga@upb.de

2 AKSW, University of Leipzig, Germany
saleem@informatik.uni-leipzig.de

Abstract. With significant growth in RDF datasets, application de-
velopers demand online availability of these datasets to meet the end
users’ expectations. Various interfaces are available for querying RDF
data using SPARQL query language. Studies show that SPARQL end-
points may provide high query runtime performance at the cost of low
availability. For example, it has been observed that only 32.2% of public
endpoints have a monthly uptime of 99–100%. One possible reason for
this low availability is the high workload experienced by these SPARQL
endpoints. As complete query execution is performed at server side (i.e.,
SPARQL endpoint), this high query processing workload may result in
performance degradation or even a service shutdown. We performed ex-
tensive experiments to show the query processing capabilities of well-
known triple stores by using their SPARQL endpoints. In particular,
we stressed these triple stores with multiple parallel requests from dif-
ferent querying agents. Our experiments revealed the maximum query
processing capabilities of these triple stores after which point they lead
to service shutdowns. We hope this analysis will help triple store devel-
opers to design workload-aware RDF engines to improve the availability
of their public endpoints with high throughput.

Keywords: triple store, Throughput, Queries-per-Second, Availability

1 Introduction

One of the basic requirements of many semantic web applications is the ability
to access and query live linked data. The term “live queryable” linked data de-
mands that the data should be queryable via online SPARQL interfaces (without
first downloading the entire knowledge graph) and processed locally to retrieve
the desired information [27]. It is one of the most important demands for the
successful deployment of many linked data-based applications. Various interfaces
such as SPARQL endpoints and Triple Pattern Fragments (TPF) provide live
SPARQL querying [27].

Further with Knowledge Graphs. M. Alam et al. (Eds.)
AKA Verlag and IOS Press, 2021

© 2021 Akademische Verlagsgesellschaft AKA GmbH, Berlin
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution License 4.0 (CC BY 4.0).
doi:10.3233/SSW210042

154



SPARQL endpoints offer a public interface to execute SPARQL queries over
the underlying RDF datasets. In this interface, the client sends a complete
SPARQL query to the server (i.e., SPARQL endpoint). The server executes the
query and returns the final results. The server is responsible for the execution
of a complete query while the client is idle most of the time [15]. This model
of query processing generally leads to better runtime performance due to the
optimization techniques used in the server. Furthermore, the network overhead
is low, as the complete query processing task is performed at one end. However,
many of the SPARQL endpoints suffer from low availability rates [27,7]. Accord-
ing to the SPARQLES [26]3 current statistics4, only 176 (i.e. 20.71%) were found
available out of a total 557 public endpoints. One potential reason for this low
availability could be service shutdowns due to the high workload experienced by
these SPARQL endpoints and the complex and expressive nature of SPARQL
queries, which may require large processing time and resources. For example, the
well-known public endpoints such as DBpedia5 and Wikidata6 receive more than
100K queries per day [19]. The RDF data storage and SPARQL query execution
is performed by the backend triple store. For example, the DBpedia SPARQL
endpoint is powered by the Virtuoso [11] triple store. The Wikidata endpoint
works on top of the BlazeGraph7 triple store. Every RDF query processing en-
gine has a certain peak performance point when exposed to multiple parallel
querying users. Exceeding the user workload beyond the maximum query pro-
cessing capability of an engine would generally lead to performance degradation
or even a service shutdown. The peak performance points of RDF triple stores de-
pend upon multiple factors, including parallel query processing capabilities, the
type of hardware resources being allocated, the efficiency of the underlying query
planner, and the type of workload experienced. Multiple studies [20,2,12,22,6,30]
have compared the performance of different triple stores; however, little attention
has been paid to assessing parallel query processing capabilities of these triple
stores [8]. To the best of our knowledge, no studies have reported the peak per-
formance points under parallel loads of the state-of-the-art triple stores. We fill
this gap by conducting extensive experiments and report the peak performance
points of the triple stores with varying multiple parallel querying clients.

Our contributions are as follows:

– We performed experiments to show the maximum query processing capabili-
ties of some well-known triple stores, with respect to the number of querying
agents they can support, by using their SPARQL endpoints. In particular,
we stressed these triple stores with multiple parallel requests from different
numbers of querying agents.

– Beyond their peak performance points, We further stressed the selected triple
stores towards launching a DoS attack.

3 SPARQLES Monitoring: https://sparqles.ai.wu.ac.at/availability
4 Data taken on 31st of March, 2021 at 11:30 (CET)
5 http://dbpedia.org/sparql
6 https://query.wikidata.org/
7 https://blazegraph.com/

H. Khan et al. / When is the Peak Performance Reached? An Analysis of RDF Triple Stores 155

https://sparqles.ai.wu.ac.at/availability


The rest of the paper is organised as follows: In section 2, we provide a sum-
mary of the different evaluations related to RDF triple stores. Section 3 explains
the evaluation setup and the evaluation results are presented in Section 4. Sec-
tion 5 explains the availability of resources and their reusability and section 6
concludes this work. The complete data to reproduce the presented results is
available from https://github.com/dice-group/RDF-Triplestores-Evaluation.

2 Related Work

The focus of this section is to show the details of the experiments performed
to evaluate the state-of-the-art triple stores. The main aim is to highlight the
lack of research into the stress tolerance of different triple stores for their peak
performance capabilities.

The importance of linked data and knowledge graphs has motivated the de-
velopment of several RDF triple stores. Ali et al. [1] categorized a total of 116
triple stores: each employs different data storage and querying processing mech-
anisms. Consequently, various triple store benchmarks also have been developed.
Saleem et al. [21] provide an analysis of 10 triple store benchmarks, each em-
ploying a different evaluation setup and experiments. Table 1 shows the list of
the triple stores evaluated and details of the experiments conducted in these
state-of-the-art triple stores benchmarks.

The performance metrics used by state-of-the-art triple store benchmarks to
compare triple stores can be divided into four main categories.

– Processing Related Metrics. The metrics included in this category are
related to the query processing capabilities of the triple stores. In this cat-
egory, the Queries per Second (QpS), Queries Mix per Hour (QMpH), and
Processing Overhead (PO) are the key metrics used in the state-of-the-art
benchmarks.

– Storage Related Metrics. The metrics included in this category are re-
lated to the data storage and indexing techniques used in the triple stores.
In this category, the data Loading Time (LT), the Storage Space (SS) re-
quired, and the Size of generated Indexes (IS) are the key metrics used in
the state-of-the-art benchmarks.

– Result Set Related Metrics. The metrics included in this category are
related to the result sets of the query execution over underlying triple stores.
In this category, Result Set Completeness (RCm) and Correctness (RCr) are
the key metrics used in the state-of-the-art benchmarks.

– Additional Metrics. This category includes additional metrics pertaining
to the use of Multiple parallel Clients (MC) to assess the parallel querying
capabilities of the triple store, and the Dataset Updates (DU).

The MC is the central metric related to our study, which is clearly missing
in the majority of benchmark evaluations. Some basic evaluation is shown in
BSBM and BioBench by multiple parallel querying clients. However, they did
not report the peak performance points of tested triple stores.

H. Khan et al. / When is the Peak Performance Reached? An Analysis of RDF Triple Stores156

https://github.com/dice-group/RDF-Triplestores-Evaluation


Table 1: Details of Benchmarks and type of experiments performed
Benchmarks Triple Stores Experimental Details

DBPSB[18] Virtuoso
Sesame
Jena-TDB
BigOWLIM

QpS and QMpH of all mentioned triple
stores were evaluated. These triple stores
were loaded with real-world DBpedia
dataset and one querying agent (user) at
a time was used.

FEASIBLE[20] Virtuoso
OWLIM-SE
Jena-TDB (Fuseki)
Sesame

QpS, QmpH and performance metrics relat-
ing to result set correctness and complete-
ness were evaluated. Two datasets, i.e., real-
world DBpedia and synthetic WatDiv, were
used. Only one querying agent was used at
a time.

WatDiv[2] 4Store
RDF-3X
MonetDB
Virtuoso

Query execution time for synthetic datasets
of different sizes was measured for only one
querying user at a time. The experiments
aim to compare triple stores by using syn-
thetically generated data.

FishMark[5] Virtuoso
Quest

QpS for all the selected triple stores was
evaluated against one querying user at a
time. A synthetic dataset was used in this
benchmark.

Bowlogna[10] RDF-3X
4Store
Virtuoso
Diplodocus

Performance metrics relating to storage,
i.e., RDF data loading time and the index
size of all triple stores were evaluated. A
synthetic dataset relating to the university
data was used.

TrainBench[24] RDF4J
Jena-TDB

All mentioned triple stores were loaded
with synthetic datasets of different sizes.
After that, they were evaluated for result
size completeness and correctness.

BioBench [30] OWLIM-SE
Virtuoso
Bigdata
Mulgara
4Store

Performance metrics relating to load time,
storage space, and result sets were evalu-
ated for single and multi users. However,
the triple stores were not evaluated for
query processing.

BSBM [6] Sesame
Jena-TDB
Jena-SDB
Virtuoso

The mentioned triple stores were loaded
with synthetic datasets of different sizes
and were evaluated for QpS, QMpH, and
some other metrics related to data storage
and result sets.

SP2Bench[22] Sesame
Virtuoso
ARQ
Redland

The selected triple stores were evaluated
for processing overhead, storage and result
set related performance metrics. Synthetic
datasets were used and only one querying
user was used.

H. Khan et al. / When is the Peak Performance Reached? An Analysis of RDF Triple Stores 157



Apart from the evaluations conducted in triple store benchmarks, additional
performance evaluations can be found in the literature as well. Voigt et al. [29]
evaluated triple stores for data loading time, query runtimes, and result set
completeness. They aimed to test the systems for some specific type of queries
like SELECT (with or without UNION, REGEX, FILTER or sub-queries). For the
multi-client scenario, they measured the avg. query performance, as well as how
many queries could be executed within a 10-minute time slot. In addition, some
experiments related to memory requirements were conducted. Conrads et al. [8]
presented a generic framework for benchmarking the read/write performance of
triple stores in the presence of multiple querying agents. They evaluated three
triple stores (Virtuoso, Fuseki and Blazegraph) for QpH and QMpH for different
dataset sizes (DBpedia and SWDF8). Rohloff et al. [23] evaluated some triple
store technologies, such as MySQL9, DAML DB10 and BigOWLIM11 (currently
called GraphDB), in combination with RDF4J12 and Jena13, as query frame-
works for data loading time and query response time, by changing the dataset
sizes. Stegmaier et al. [23] performed an evaluation on some of the RDF database
technologies, including RDF4J14, AllegroGraph [25], and Jena-SDB15 for their
query execution time by using the SP2 [22] benchmark. Cudré-Mauroux et al. [9]
empirically evaluated the NoSQL databases for RDF. Their evaluation is based
on a comparison of several NoSQL stores, along with a native triple store, i.e.,
4Store [13] for RDF processing. Furthermore, Verborgh et al. [28] evaluate their
query engine named Triple Pattern Fragments (TPF) based on performance
metrics Number of Timeouts, Query Execution Time, and Network Usage. Simi-
larly, Minier et al. in SAGE [17] perform evaluations based on avg. workload com-
pletion time for 50 clients and compare their system with brTPF [14], TPF [28]
and Virtuoso [11]. Finally, Azzam et al. [4] compare SMART-KG with TPF, Vir-
tuoso and SAGE by using performance metrics Number of Timeouts, Execution
Time and Resource Consumption.

However, to the best of our knowledge, none of these additional evaluations
tested the performance of triple stores for their maximum throughput during
parallel querying workload.

3 Evaluation Setup

In this section, we explain the evaluation setup used in the experiments. In
general, any evaluation related to RDF systems comprises an RDF dataset, a
collection of SPARQL queries, and a set of performance metrics. Here, we present
8 Semantic Web Dog Food
9 http://www.mysql.com/

10 http://www.daml.org/2001/09/damldb/
11 https://www.ontotext.com/products/graphdb/
12 http://www.openrdf.org/
13 https://jena.apache.org/
14 http://www.openrdf.org/
15 https://jena.apache.org/documentation/sdb/

H. Khan et al. / When is the Peak Performance Reached? An Analysis of RDF Triple Stores158

http://www.mysql.com/
http://www.daml.org/2001/09/damldb/
https://www.ontotext.com/products/graphdb/
http://www.openrdf.org/
https://jena.apache.org/
http://www.openrdf.org/
https://jena.apache.org/documentation/sdb/


key features of each of these components that are important to consider for fair
evaluation. Many of these features come from state-of-the-art research contribu-
tions mentioned in [20,21,2].

Benchmarks. Benchmarks for the evaluation of triple stores can either be syn-
thetic or real-data [21]. The synthetic-data benchmarks make use of a data gen-
erator to generate synthetic data. Queries can be generated by using query tem-
plates on the underlying data. Synthetic-data benchmarks are useful in testing
the scalability of triple stores with varying dataset sizes. However, they often fail
to reflect characteristics of the real-world queries posted by users of the datasets
in practice [21,19,3]. On the other hand, real-data benchmarks contain both
data and queries, selected from real-world RDF datasets and their correspond-
ing query logs. Such benchmarks more closely reflect the real-world deployment
of triple stores. However, analysis of real-world queries [19,3] show that they are
quite simple in terms of the structural features (number of triple patterns, types
of joins, projections, etc.) and data-driven features (result sizes, selectivity, etc.)
of SPARQL queries [21,2]. Keeping in mind the pros and cons of both types of
benchmarks, we consider both real-world as well as synthetic benchmarks in our
evaluation:

– FEASIBLE[20]: is a real-data benchmark generator, which generates bench-
marks by using the real-world query logs of RDF datasets. We used the same
benchmark (analyzed in [21]) that was generated by the FEASIBLE frame-
work. This benchmark is based on the DBpedia3.5.1 dataset.16 The dataset
contains a total of 232M (English version) triples, 18,425k distinct subjects,
39,672 predicates, and 65,184k objects. The benchmark includes a total of 50
real queries selected from the DBpedia3.5.1 SPARQL endpoint log. These
queries cover most of the required structural and data-driven features of
the SPARQL queries [21]. Furthermore, it is the most diverse benchmark in
comparison to other triple store benchmarks included in [21].

– WatDiv[2]: is a synthetic benchmark generator. Again, we used the same
benchmark analyzed in [21] that was generated by WatDiv generators hav-
ing 108M triples, usually called 100M WatDiv dataset. Similarly, for more
diverse evaluation and to test the scalability of the triple stores w.r.t. varying
dataset sizes, we considered two more datasets generated by the same bench-
mark having 10M and one billion triples. The total number of query tem-
plates used in benchmarks is 50, including 20 basic testing query templates
and 30 extensions to basic testing. The basic testing consists of queries in
four categories, namely, linear queries (L), star queries (S), snowflake-shaped
queries (F) and complex queries (C) [2].

The coefficient of variation, which shows diversity scores [21] across different
SPARQL query features, is shown in Fig. 1. The coverage of different SPARQL
clauses and join vertex types is shown in Table 2. Further detailed analysis of the
datasets as well as queries about the selected benchmarks can be found in [21].
16 DBpedia3.5.1: dbpedia.org

H. Khan et al. / When is the Peak Performance Reached? An Analysis of RDF Triple Stores 159

dbpedia.org


Fig. 1: Diversity scores across different SPARQL query features of the benchmarks.

Distributions of SPARQL Clauses Distr. of Join Vertex Type

Benchmark DIST FILT REG OPT UN LIM ORD Star Path Sink Hyb. N.J.

Watdiv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.0 64.0 26.0 20.0 0.0
FEASIBLE 56.0 58.0 22.0 28.0 40.0 42.0 32.0 58.0 18.0 36.0 16.0 30.0

Table 2: Coverage of SPARQL clauses and join vertex types used in the benchmarks in
percentages. SPARQL clauses: DIST[INCT], FILT[ER], REG[EX], OPT[IONAL], UN[ION],
LIM[IT], ORD[ER BY]. Join vertex types: Star, Path, Sink, Hyb[rid], N[o] J[oin].

Please note that these are the two most diverse benchmarks according to the
benchmarks analysis conducted in [21].

Performance Metric. Since we are measuring the throughput of triple stores,
we use Queries per Second (QpS) as the main performance indicator.

Triple Stores. We selected triple stores to be included in the evaluation based
on the following criteria: (1) the triple stores should be available for free, there-
fore we excluded commercial triple stores, (2) they should be able to load and
process both the selected datasets and the corresponding queries, (3) they should
offer SPARQL HTTP endpoints, (4) they should support the SPARQL features
included in the FEASIBLE benchmark, therefore triple stores which only sup-
port BGP17 queries are excluded, and (5) they should have no benchmarking
restrictions, e.g., the maintainers had to approve the inclusion of their system
results in the publication to the public.

17 https://www.w3.org/TR/rdf-sparql-query/#BasicGraphPatterns

H. Khan et al. / When is the Peak Performance Reached? An Analysis of RDF Triple Stores160



Based on the above criteria we have considered the following triple stores in
our evaluation18:

1. Virtuoso19 is flexible enough to configure most of its parameters through
config file. We used Virtuoso version 7.2.6 with NumberOfBuffers=680000
and MaxDirtyBufferes=500000, which is recommended settings for 8 GB of
free system memory. The parameter MaxClientConnections in the HTTP
Server section, is set according to the number of querying users (i.e., one
connection per querying user) for all the individual experiments.
The ThreadsPerQuery=32 is set according to the number of CPU cores.

2. Jena TDB20 Version 3.13.1 with Fuseki as HTTP interface with Java heap
size set to 8g. The documentation21 about parallelism shows that Jena’s
query mechanism is itself multi-threaded, and it supports parallel querying
by default.

3. Blazegraph22 Version 2.1.4, with Jetty as HTTP interface and Java heap
size set to 8g. Through its configuration file, we changed the
QueryThreadPoolSize=32 and ReadOnly=True. All other parameters were
kept default.

4. Ontotext GraphDB23 with Java heap=8g.
5. Parliament [16] with MIN MEM=1g and MAX MEM=8g of Java heap and jetty

as HTTP interface.

In some cases, we also contacted the maintainers of the systems to get the
recommended and comparable settings.

Benchmark Execution. All the experiments were performed using the bench-
mark execution framework Iguana V2.1.2 [8], which is particularly developed
to measure the read/write performance of RDF triple stores in the presence of
multiple querying agents. As recommended by the maintainer, we set the query
time-out to 10 minutes per query, and each experiment was performed in a stress
test with 60 minutes run time. All the experiments were performed for 1, 2, 4,
8, 16, 32, 64 and 128 concurrently executing clients. Before starting the evalu-
ation, we bulk loaded each of the datasets into the triple stores. During each
run of the experiment, the triple stores contained only the dataset upon which
the benchmarking was being carried out. Moreover, we tested the selected triple
stores up to 128 concurrent clients to ensure the service unavailability.
Hardware. All experiments were performed on a machine with two Intel Xeon
E5-2620 v4 CPUs having each 8 physical cores and 16 logical cores, 256GB RAM,
11 TB HDD and running Ubuntu 20.04.2 LTS.
18 We tried our best to test the selected triple stores with matching configuration

settings.
19 Virtuoso:https://virtuoso.openlinksw.com/
20 Jena TDB: https://jena.apache.org/documentation/tdb/
21 https://jena.apache.org/documentation/notes/concurrency-howto.html
22 Blazegraph: https://blazegraph.com/
23 GraphDB: http://graphdb.ontotext.com/

H. Khan et al. / When is the Peak Performance Reached? An Analysis of RDF Triple Stores 161

https://virtuoso.openlinksw.com/
https://jena.apache.org/documentation/tdb/
https://blazegraph.com/
http://graphdb.ontotext.com/


4 Results and Discussion

Fig. 2d shows the results when all the triple stores are loaded with the DB-
pedia3.5.1 dataset and FEASIBLE [20] benchmark queries were executed on
them. Similarly, Fig. 2a, 2b, and 2c show the WatDiv benchmarking results
when the triple stores are tested with 10 million, 100 million and one billion
triples datasets, respectively. From these graphs, we want to look for the key
findings pertaining to the following research questions: (1) Which triple store
achieved the highest throughput in terms of QpS? (2) On avg., which triple
store is performing the best? (3) What is the peak performance point of each of
the selected triple stores and when is it achieved? (4) How do the triple stores
scale to the increasing number of parallel querying agents? (5) At which point
does the DoS occur? and (6) How do systems scale with the increasing dataset
sizes? In the following, we discuss each of these key questions24.

1 2 4 8 16 32 64 128

0

50

100

150

200

250 Fuseki−TDB

Virtuso

Blazegraph

Parliament

GraphDB

(a) WatDiv-10M

1 2 4 8 16 32 64 128

0

50

100

150

200
Fuseki−TDB

Virtuso

Blazegraph

Parliament

GraphDB

(b) WatDiv-100M

1 2 4 8 16 32 64 128

0

50

100

150

200

Fuseki−TDB

Virtuso

Blazegraph

Parliament

GraphDB

(c) WatDiv-1B

1 2 4 8 16 32 64 128

0

50

100

150

200

Fuseki−TDB

Virtuso

Blazegraph

Parliament

GraphDB

(d) FEASIBLE (DBpedia)

Fig. 2: Benchmark results on (a), (b), (c) and (d) for all the triple stores - For each
benchmark, the x-axis shows the No. of querying users while y-axis shows the avg. QpS
per user.

24 Please note that the aim of this paper is to report the triple stores performances
with different stress testing. The reason why one triple store performs better than
others is out of the scope of this paper.

H. Khan et al. / When is the Peak Performance Reached? An Analysis of RDF Triple Stores162



Virtuoso Blazegraph GraphDB Parliament Fuseki

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

154

62
70

64 63 63 64
50

265

218
205

236

44
32

40

71
80

41
55

91

WatDiv−10M

WatDiv−100M

WatDiv−1000M

FEASIBLE

Fig. 3: Peak throughput in terms of avg. QpS per client of all given triple stores with
different benchmarks.

Highest Throughput: Fig. 4a shows that GraphDB achieves the highest peak
performance point, i.e., 231 on avg., as well as in the case of all the individ-
ual benchmarks (ref. Figure 2). Followed by GraphDB, Virtuoso achieves the
second position by achieving maximum avg. throughput of 88 QpS, and in the
case of WatDiv-10-Million benchmark, it has the highest individual QpS value
as shown in Fig. 3. Then Fuseki-TDB, Blazegraph and Parliament achieve the
3rd, 4th and 5th position, respectively. Finally, Blazegraph achieves almost the
same maximum QpS in all WatDiv benchmarks.

Average Throughput: The avg. throughput of the selected triple stores can be
measured by calculating the area under the curve in the corresponding through-
put graphs. The higher the area covered, the higher the avg. throughput. Fig. 4b
shows that Virtuoso achieves the maximum avg. throughput of 3621. It is fol-
lowed by Parliament having 3101, then Fuseki-TDB having 2727, followed by
GraphDB with 2364 and then Blazegraph with 1775. From the Fig. 3 and 4b,
it can be observed that the maximum peak performance in terms of QpS, does
not necessarily mean that the same system will perform well in terms of avg.
throughput.

Peak Performance Points: The results in Fig. 2 show that there is a peak
performance point for each triple store. This peak point of any triple store dif-
fers for all the benchmarks, but is reached during the same number of querying
agents. Once that point is reached, further increase in the querying workload
leads to gradual decrease in performance.

H. Khan et al. / When is the Peak Performance Reached? An Analysis of RDF Triple Stores 163



Virtuoso Blazegraph GraphDB Parliament Fuseki

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

88

60

231

67
47

(a) Peak performance point

Virtuoso Blazegraph GraphDB Parliament Fuseki

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

3621

1775

2364

3101

2727

(b) Total throughput

Fig. 4: (a) shows the peak performance point in terms of the avg. maximum QpS per
user, while (b) shows the total throughput of the systems (triple stores) in terms of the
area covered under the curve of avg. QpS of all benchmarks.

Parallel Scalability: It refers to how triple stores react to the increasing query-
ing agents. A highly parallel scalable triple store’s throughput would gradually
increase with the increasing number of multiple querying agents. We can see from
Fig. 5f, that this is not the case for the majority of selected triple stores, i.e.,
the peak performance point of these triple stores is reached quite early. In this
regard, the parallel scalable triple store ranking is: Fuseki-TDB and Parliament
are scalable up to 8 querying agents, followed by Virtuoso with 4, Blazegraph
with 2, and GraphDB with only one. It is worth mentioning here that Parliament
achieve the least avg. peak performance but is scalable in terms of the maximum
number of querying agents it supports.

Denial of Service (DoS): Our results show that the throughput of the selected
triple stores almost reaches zero when exposed to 128 querying agents. This is
the point at which triple stores almost stop responding.

Scalability with Increasing Dataset: Finally, we want to measure the scal-
ability of the selected triple stores in terms of varying datasets sizes as well as
increasing querying agents. Fig. 5a, 5b, 5c, 5d and 5e show the corresponding
results for each of the selected triple stores. We can clearly see that, in general,
performance is decreased with the increase in the number of agents as well as the
size of dataset. These results are as expected because increasing the workload or
the dataset size will lead to more processing work to be performed by the triple
stores to get the desired query results. However, a sub question to be investigated
is that which triple store scale better with increasing dataset size? Fig 5b shows
that the throughput of Blazegraph is not much affected by increasing the size of
the dataset. It is followed by GraphDB (ref. Figure 5e) with little effect on the
varying dataset sizes. On the other hand, we can clearly see a short performance
drop on the other three selected triple stores. In particular, the performance of
Virtuoso is greatly affected by the dataset sizes. In conclusion, the results sug-

H. Khan et al. / When is the Peak Performance Reached? An Analysis of RDF Triple Stores164



1 2 4 8 16 32 64 128

0

20

40

60

80
WatDiv−1000M

WatDiv−100M

WatDiv−10M

(a) Fuseki-TDB

1 2 4 8 16 32 64 128

0

10

20

30

40

50

60
WatDiv−1000M

WatDiv−100M

WatDiv−10M

(b) Blazegraph

1 2 4 8 16 32 64 128

0

10

20

30

40
WatDiv−1000M

WatDiv−100M

WatDiv−10M

(c) Parliament

1 2 4 8 16 32 64 128

0

50

100

150 WatDiv−1000M

WatDiv−100M

WatDiv−10M

(d) Virtuoso

1 2 4 8 16 32 64 128

0

50

100

150

200

250 WatDiv−1000M

WatDiv−100M

WatDiv−10M

(e) GraphDB

Virtuoso Blazegraph GraphDB Parliament Fuseki

0
2

4
6

8
1
0

4

2

1

8 8

(f) Users support

Fig. 5: Benchmark results on WatDiv-10-Million (a), WatDiv-100-Million (b), WatDiv-
One-Billion (c) and DBpedia (d); For each benchmark, x-axis shows the No. of querying
users while y-axis shows the avg. QpS per user. (f) shows the No. of users that triple
stores support concurrently with highest throughput.

H. Khan et al. / When is the Peak Performance Reached? An Analysis of RDF Triple Stores 165



gest that Blazegraph is the most scalable triple store to handle big data with
smaller effect on the throughput.

In summary, our results reveal the parallel query processing capabilities of
selected triple stores. In particular, there exists a peak performance point for
each of these triple stores which is generally reached with only a small number
of multiple querying agents, as shown in Fig. 5f. Hence, these triple stores can
easily lead to performance degradation or even a service shutdown when they
are exposed to multiple querying users.

5 Resource Availability and Reusability

The datasets and queries used in this work are based on state-of-the-art bench-
marks [20,2]. The query execution was performed by using the IGUANA [8]
benchmark execution framework. All data required to reproduce these experi-
ments or conduct a new set of experiments are available from the aforementioned
repository homepage. Since we used standard state-of-the-art benchmarks and
a standard benchmark execution framework, new triple store developers can use
the same setup to test their own triple stores and compare with the state of the
art. Finally, we also provide the complete evaluation results to enable a more fine-
grained analysis. The current queries used in the FEASIBLE-DBpedia bench-
mark were selected from the query log of the DBpedia version 3.5.1. However,
new queries for other versions of DBpedia are now available from the LSQ [19]
dataset, which can be directly consumed by the FEASIBLE benchmark gen-
eration framework. In the future, we will provide more FEASIBLE-DBpedia
benchmarks for the newer versions of DBpedia from the same resource home
page. This will ensure triple store testing for their scalability with respect to
varying sizes of DBpedia.

6 Conclusion

State-of-the-art linked data querying interfaces face the problem of finding a rea-
sonable solution for the trade-off between performance and availability of RDF
triple stores. Serving requests with high efficiency, and at the same time ensur-
ing high availability of the endpoints, is crucial for the success of the Semantic
Web. We conducted experiments with the aim of facilitating the design of smart
query processing interfaces that ensure both high performance and availability.
In particular, we showed the peak performance points and the parallel query
processing capabilities of selected triple stores. Furthermore, we showed the ex-
treme workloads that lead to potential service shutdowns on these triple stores.
Finally, we measured the effect of varying dataset sizes on the query runtime per-
formances of the selected triple stores. In the future, we want to include more
triple stores and measure the effect of the resources (allocated RAM memory in
particular) on the performance.

H. Khan et al. / When is the Peak Performance Reached? An Analysis of RDF Triple Stores166



Acknowledgments

This work has been supported by the project LIMBO (Grant no. 19F2029I),
OPAL (no. 19F2028A), KnowGraphs (no. 860801), and SOLIDE (no. 13N14456).
In addition, the higher education commission of Pakistan.

References

1. Ali, W., Saleem, M., Yao, B., Hogan, A., Ngomo, A.C.N.: A survey of rdf stores &
sparql engines for querying knowledge graphs (2021)

2. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of rdf
data management systems. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C.,
Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.)
The Semantic Web – ISWC 2014. pp. 197–212 (2014)

3. Arias, M., Fernández, J.D., Mart́ınez-Prieto, M.A., de la Fuente, P.: An empirical
study of real-world SPARQL queries. CoRR abs/1103.5043 (2011), http://arxiv.
org/abs/1103.5043

4. Azzam, A., Fernandez, J.D., Acosta, M., Beno, M., Polleres, A.: Smart-kg: Hybrid
shipping for sparql querying on the web. In: Proceedings of The 2020 World Wide
Web Conference, WWW 2020. (To appear) (2020)

5. Bail, S., Alkiviadous, S., Parsia, B., Workman, D., van Harmelen, M., Gonçalves,
R.S., Garilao, C.: FishMark: A linked data application benchmark. In: Proceedings
of the Joint Workshop on Scalable and High-Performance Semantic Web Systems.
pp. 1–15 (2012), http://ceur-ws.org/Vol-943/SSWS HPCSW2012 paper1.pdf

6. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semantic Web
Inf. Syst. 5(2), 1–24 (2009). https://doi.org/10.4018/jswis.2009040101, https://
doi.org/10.4018/jswis.2009040101

7. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: Sparql web-
querying infrastructure: Ready for action? In: The Semantic Web – ISWC 2013.
pp. 277–293. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

8. Conrads, F., Lehmann, J., Saleem, M., Morsey, M., Ngomo, A.N.: IGUANA: A
generic framework for benchmarking the read-write performance of triple stores.
In: ISWC. pp. 48–65. Springer (2017)

9. Cudré-Mauroux, P., Enchev, I., Fundatureanu, S., Groth, P., Haque, A., Harth,
A., Keppmann, F.L., Miranker, D., Sequeda, J.F., Wylot, M.: Nosql databases for
rdf: An empirical evaluation. In: The Semantic Web – ISWC 2013. pp. 310–325.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

10. Demartini, G., Enchev, I., Wylot, M., Gapany, J., Cudré-Mauroux, P.:
BowlognaBench - benchmarking RDF analytics. In: Data-Driven Process Discovery
and Analysis SIMPDA. pp. 82–102. Springer (2011)

11. Erling, O., Mikhailov, I.: Virtuoso: RDF Support in a Native RDBMS, pp. 501–519.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

12. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL
knowledge base systems. J. Web Sem. 3(2-3), 158–182 (2005).
https://doi.org/10.1016/j.websem.2005.06.005, https://doi.org/10.1016/j.websem.
2005.06.005

13. Harris, S., Lamb, N., Shadbolt, N., Ltd, G.: 4store: The design and implementation
of a clustered rdf store. Proc. SSWS (01 2009)

H. Khan et al. / When is the Peak Performance Reached? An Analysis of RDF Triple Stores 167

http://arxiv.org/abs/1103.5043
http://arxiv.org/abs/1103.5043
http://ceur-ws.org/Vol-943/SSWS_HPCSW2012_paper1.pdf
https://doi.org/10.4018/jswis.2009040101
https://doi.org/10.4018/jswis.2009040101
https://doi.org/10.4018/jswis.2009040101
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1016/j.websem.2005.06.005


14. Hartig, O., Aranda, C.B.: brtpf: Bindings-restricted triple pattern fragments (ex-
tended preprint). CoRR (2016), http://arxiv.org/abs/1608.08148

15. Khan, H.: Towards more intelligent sparql querying interfaces. In: International
Semantic Web Conference (2019), http://ceur-ws.org/Vol-2548/paper-12.pdf

16. Kolas, D., Emmons, I., Dean, M.: Efficient linked-list rdf indexing in parliament
17. Minier, T., Skaf-Molli, H., Molli, P.: Sage: Web preemption for public sparql query

services. In: The World Wide Web Conference. pp. 1268–1278. WWW ’19, ACM,
New York, NY, USA (2019). https://doi.org/10.1145/3308558.3313652, http://doi.
acm.org/10.1145/3308558.3313652

18. Morsey, M., Lehmann, J., Auer, S., Ngomo, A.N.: DBpedia SPARQL benchmark
- performance assessment with real queries on real data. In: ISWC. pp. 454–469
(2011)

19. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.N.: LSQ: the linked
SPARQL queries dataset. In: ISWC. pp. 261–269. Springer (2015)

20. Saleem, M., Mehmood, Q., Ngomo, A.N.: FEASIBLE: a feature-based SPARQL
benchmark generation framework. In: ISWC. pp. 52–69. Springer (2015)

21. Saleem, M., Szárnyas, G., Conrads, F., Bukhari, S.A.C., Mehmood, Q.,
Ngonga Ngomo, A.C.: How representative is a sparql benchmark? an
analysis of rdf triplestore benchmarks. In: The World Wide Web Con-
ference. pp. 1623–1633. WWW ’19, ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3308558.3313556, http://doi.acm.org/10.1145/3308558.
3313556

22. Schmidt, M., Hornung, T., Meier, M., Pinkel, C., Lausen, G.: SP2Bench: A
SPARQL Performance Benchmark, pp. 371–393. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

23. Stegmaier, F., Gröbner, U., Döller, M., Kosch, H.: Evaluation of current rdf
database solutions

24. Szárnyas, G., Izsó, B., Ráth, I., Varró, D.: The train benchmark: cross-technology
performance evaluation of continuous model queries. Software and systems model-
ing 17(4), 1365—1393 (2018). https://doi.org/10.1007/s10270-016-0571-8, https:
//europepmc.org/articles/PMC6132656

25. Tajabor, P., Raafat, T.: Challenges over two semantic repositories - owlim and
allegrograph. Indonesian Journal of Electrical Engineering and Computer Science
2, 194 (04 2016). https://doi.org/10.11591/ijeecs.v2.i1.pp194-204

26. Vandenbussche, P.Y., Umbrich, J., Matteis, L., Hogan, A., Buil-Aranda, C.:
Sparqles: Monitoring public sparql endpoints. Semantic Web 8, 1–17 (01 2017).
https://doi.org/10.3233/SW-170254

27. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L.,
De Meester, B., Haesendonck, G., Colpaert, P.: Triple pattern fragments: a low-
cost knowledge graph interface for the web. JOURNAL OF WEB SEMANTICS
37-38, 184–206 (2016), http://dx.doi.org/10.1016/j.websem.2016.03.003

28. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De
Meester, B., Haesendonck, G., Colpaert, P.: Triple pattern fragments: A low-cost
knowledge graph interface for the web. Journal of Web Semantics 37-38, 184–
206 (2016). https://doi.org/https://doi.org/10.1016/j.websem.2016.03.003, https:
//www.sciencedirect.com/science/article/pii/S1570826816000214

29. Voigt, M., Mitschick, A., Schulz, J.: Yet another triple store benchmark? practical
experiences with real-world data. In: SDA (2012)

30. Wu, H., et al.: BioBenchmark Toyama 2012: An evaluation of the performance
of triple stores on biological data. J. Biomedical Semantics 5, 32 (2014).
https://doi.org/10.1186/2041-1480-5-32, https://doi.org/10.1186/2041-1480-5-32

H. Khan et al. / When is the Peak Performance Reached? An Analysis of RDF Triple Stores168

http://arxiv.org/abs/1608.08148
http://ceur-ws.org/Vol-2548/paper-12.pdf
https://doi.org/10.1145/3308558.3313652
http://doi.acm.org/10.1145/3308558.3313652
http://doi.acm.org/10.1145/3308558.3313652
https://doi.org/10.1145/3308558.3313556
http://doi.acm.org/10.1145/3308558.3313556
http://doi.acm.org/10.1145/3308558.3313556
https://doi.org/10.1007/s10270-016-0571-8
https://europepmc.org/articles/PMC6132656
https://europepmc.org/articles/PMC6132656
https://doi.org/10.11591/ijeecs.v2.i1.pp194-204
https://doi.org/10.3233/SW-170254
http://dx.doi.org/10.1016/j.websem.2016.03.003
https://doi.org/https://doi.org/10.1016/j.websem.2016.03.003
https://www.sciencedirect.com/science/article/pii/S1570826816000214
https://www.sciencedirect.com/science/article/pii/S1570826816000214
https://doi.org/10.1186/2041-1480-5-32
https://doi.org/10.1186/2041-1480-5-32

	When is the Peak Performance Reached? An Analysis of RDF Triple Stores

