
Optimizing RDF Stream Processing for
Uncertainty Management

Robin Keskisärkkä, Eva Blomqvist and Olaf Hartig
Linköping University, Linköping, Sweden

Abstract. RDF Stream Processing (RSP) has been proposed as a way of bridging
the gap between the Complex Event Processing (CEP) paradigm and the Semantic
Web standards. Uncertainty has been recognized as a critical aspect in CEP, but
it has received little attention within the context of RSP. In this paper, we inves-
tigate the impact of different RSP optimization strategies for uncertainty manage-
ment. The paper describes (1) an extension of the RSP-QL� data model to cap-
ture bind expressions, filter expressions, and uncertainty functions; (2) optimiza-
tion techniques related to lazy variables and caching of uncertainty functions, and
a heuristic for reordering uncertainty filters in query plans; and (3) an evaluation of
these strategies in a prototype implementation. The results show that using a lazy
variable mechanism for uncertainty functions can improve query execution perfor-
mance by orders of magnitude while introducing negligible overhead. The results
also show that caching uncertainty function results can improve performance under
most conditions, but that maintaining this cache can potentially add overhead to
the overall query execution process. Finally, the effect of the proposed heuristic on
query execution performance was shown to depend on multiple factors, including
the selectivity of uncertainty filters, the size of intermediate results, and the cost
associated with the evaluation of the uncertainty functions.

Keywords. RSP, CEP, Uncertainty, RSP-QL

1. Introduction

RDF Stream Processing (RSP) is based on existing Semantic Web standards but extends
traditional approaches to support continuous processing of streaming RDF data. While
several RSP systems have been inspired by data stream management systems [1,2,3],
RSP has also been proposed as a candidate for bringing together the Complex Event
Processing (CEP) paradigm and the Semantic Web standards [4,5,6,7] in order to target
information integration and stream reasoning. CEP focuses on detecting events from
streaming sources, where a high-level event may be viewed as an abstraction of a set of
low-level events.

Within the CEP domain, representing and reasoning with uncertainty has been rec-
ognized as a critical aspect for dealing with real-world data, which can be imprecise, in-
complete, and noisy [8,9,10]. However, within the RSP domain uncertainty has received
little attention. In previous work, we evaluated the impact of explicitly managing differ-
ent uncertainty types in RSP, which showed a need for research on query optimization
strategies to improve uncertainty management efficiency [11].

Further with Knowledge Graphs. M. Alam et al. (Eds.)
AKA Verlag and IOS Press, 2021

© 2021 Akademische Verlagsgesellschaft AKA GmbH, Berlin
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution License 4.0 (CC BY 4.0).
doi:10.3233/SSW210039

118

The main contributions of this paper are (1) an extension of the RSP-QL�data model
we proposed in [11], to capture the syntax and semantics of uncertainty functions along
with filter and bind expressions, (2) two technical optimization strategies for increasing
query execution performance, and a heuristic to support reordering of uncertainty filters,
and (3) an evaluation of these strategies in a prototype implementation.

The outline of the paper is as follows. Section 2 briefly introduces some basic con-
cepts, and Section 3 extends the syntax and semantics of RSP-QL�. Section 4 provides
query re-write rules, describes optimization strategies, and provides a heuristic for re-
ordering uncertainty filters. Section 5 presents an evaluation of the proposed strategies
in a prototype implementation. Finally, Section 6 summarizes the findings and outlines
future work.

2. Preliminaries

Uncertainty in CEP can broadly be viewed as belonging to three main types: occurrence
uncertainty, attribute uncertainty, and pattern uncertainty [8,9,12]. Variations of these
uncertainty types have been modeled and implemented in existing CEP systems to deal
with data that may be, e.g., incomplete, imprecise, vague, contradictory, or noisy [8,10].
In this paper, we explicitly focus on issues related to attribute uncertainty.

Attribute uncertainty generally refers to uncertainty about the content of event ob-
jects [8,12]. For example, when a sensor reports a value, the true value is usually assumed
to be near the reported value but limited by the precision of the sensor and additional
factors of the environment. While such uncertainty is often ignored for simplicity it can
have important consequences. For example, consider a case where the task is to generate
an alert whenever the oxygen concentration in a room falls below 19.5%. Should an alert
be generated if the oxygen concentration is reported to be 19.7%? When also considering
that the sensor is only accurate to within 1%, or biased towards higher values?

Attribute uncertainty is often expressed as a distribution around a value, typically
described as a probability distribution. While there are no standardized formats for rep-
resenting probability distributions in RDF, in this paper we will use a literal datatype,
defined for this purpose in our previous work [11]. The literal datatype is denoted by the
URI rspu:distribution, and is of the form f (p1, p2, ..., pn), where f is a string identifier
for a probability distribution type, and every pi is a floating-point number. For example,
a normal distribution with a mean μ of 19.7 and variance σ2 of 1 could be represented
using the literal "N(19.7,1)". Similarly, a uniform distribution between 18.7 and 20.7
could be represented as "U(18.7,20.7)".

In order to deal with streaming RDF data, several RSP models and implementations
have been proposed over the past decade, and Dell’Aglio et al. defined RSP-QL as a
way of unifying the syntax and semantics of these initial proposals [13,14]. The RSP-QL
language extends SPARQL 1.1 to enable querying of streaming data by allowing dis-
crete portions of RDF streams to be defined and queried. In earlier work we proposed
RSP-QL�, which extends RSP-QL to support statement-level annotations as an alterna-
tive to RDF reification [15]. Listing 1 provides an example query demonstrating the main
features of the RSP-QL� language, leveraging two uncertainty functions described later
in Section 3.1. For an in-depth description of the RSP-QL� data model and syntax, the
reader is referred to the original paper [15].

R. Keskisärkkä et al. / Optimizing RDF Stream Processing for Uncertainty Management 119

REGISTER STREAM <warning/oxygen> COMPUTED EVERY PT10S AS
SELECT ?value
FROM NAMED WINDOW <w> ON <http://stream/oxygen> [RANGE PT10S STEP PT10S]
WHERE {

WINDOW <w> {
GRAPH ?g {

?o sosa:hasSimpleResult ?value .
<< ?o sosa:hasSimpleResult ?value >> rspu:uncertainty ?unc .
BIND(rspu:add(?unc, ?value) AS ?d)
FILTER(rspu:greaterThan(?d, 0.195) > 0.90)

}
}

}

Listing 1: An RSP-QL� query that passes events to the output stream when the reported
oxygen concentration is greater than 19.5% with a probability greater than 0.90. The
measurement error is combined with the reported value before being compared with the
threshold value.

3. Syntax and Semantics of RSP-QL*

RSP extends traditional RDF/SPARQL by introducing a time dimension to process-
ing [13]. In RSP-QL, the time dimension is managed via windows that define dis-
crete subsets over RDF streams that can then be queried as regular RDF datasets.
RSP-QL� [15] extends RSP-QL by extending it along the lines of RDF�/SPARQL� [16,
17]. Essentially, RDF� allows RDF triples to be used as subjects and objects in triples,
while SPARQL� supports the querying of such triples. We use RSP-QL� as the start-
ing point for this work. For the SPARQL-specific constructs, we adopt the algebraic
SPARQL syntax introduced by Pérez et al. [18]. Due to space constraints, we here limit
ourselves to presenting only the core concepts of the language and an extension to a
subset of the SPARQL algebra.

The basic building block of SPARQL [19] is a basic graph pattern (BGP), that is, a
finite set of triple patterns. A triple pattern is a tuple (s, p,o) ∈ (V ∪B∪I)× (V ∪I)×
(V ∪B∪I ∪L), where V is the set of query variables disjoint from I (all IRIs), B (all
blank nodes) and L (all literals), respectively. A solution mapping is a partial function
that maps query variables to blank nodes, IRIs, or literals η : V → (I ∪B∪L).

RSP-QL� extends triple patterns to support the concept of triple� patterns [17,16],
which allow triple patterns to be nested (arbitrarily deep). A triple� pattern is defined
recursively as follows: i) any triple pattern is a triple� pattern, and ii) given two triple�

patterns t p and t p′, and s ∈ (I ∪V), p ∈ (I ∪V), and o ∈ (I ∪L∪V), then (t p, p,o),
(s, p, t p), and (t p, p, t p′) are triple� patterns. A finite set of triple� patterns is referred to
as a BGP�.

Similarly, the notion of solution mappings is extended to solution� mappings that
allow both RDF terms and RDF� triples to be bound to query variables. A solution�

mapping is defined as a partial mapping η : V → (T ∪I ∪L), where T is an RDF� triple.
We use the notion of comparison terms to denote the terms that can be used in

SPARQL built-in conditions. For a complete list of the built-in predicates, we refer the
reader to the SPARQL specification [19].

R. Keskisärkkä et al. / Optimizing RDF Stream Processing for Uncertainty Management120

Definition 1. Comparison terms are defined recursively as follows:

• a variable is a comparison term,
• a URI is a comparison term,
• a literal is a comparison term,
• if f denotes a SPARQL built-in predicate [19] and x1, ...,xn are comparison terms,

then f (x1, ...,xn) is a comparison term, and
• if f is a URI that denotes an uncertainty function defined in Section 3.1 and

x1, ...,xn are comparison terms, then f (x1, ...,xn) is a comparison term.

Definition 2. Built-in conditions are defined recursively as follows:

• if x and y are comparison terms, then x = true, x = y, x < y, x ≤ y, x > y, x ≥ y,
x �= y are built-in conditions, and

• if c1 and c2 are built-in conditions, then c1 ∧ c2, c1 ∨ c2 and ¬c1 are built-in con-
ditions.

3.1. Syntax of Uncertainty Functions

We here leverage the set of extension functions for managing probability distributions
introduced in our previous work [11]. The functions support some useful operations on
probability distributions. For these definitions, let Ld be the set of all rspu:distribution
literals and Ln be the set of all literals with numeric data types. For every literal l ∈ Ld ,
we write val(l) to denote the probability distribution that l represents, and for every
l ∈ Ln, val(l) denotes the numeric value represented by l.

Definition 3. The URI rspu:add denotes a function fadd that, for every c1 ∈ Ld and
c2 ∈ Ld ∪Ln, returns a literal c3 ∈ Ld such that val(c3) is the probability distribution
obtained by adding val(c1) to val(c2).

Definition 4. The URI rspu:subtract denotes a function fsubtract that, for every c1 ∈ Ld
and c2 ∈Ld ∪Ln, returns a literal c3 ∈Ld such that val(c3) is the probability distribution
obtained by subtracting val(c2) from val(c1).

Definition 5. The URI rspu:greaterThan denotes a function fgreaterThan that, for every
c1 ∈ Ld and c2 ∈ Ld ∪Ln, returns a literal c3 ∈ Ln such that val(c3) is the probability
that val(c1) is greater than val(c2).

Definition 6. The URI rspu:lessThan denotes a function flessThan that, for every c1 ∈Ld
and c2 ∈Ld ∪Ln, returns a literal c3 ∈Ln such that val(c3) is the probability that val(c1)
is less than val(c2).

Definition 7. The URI rspu:between denotes a function fbetween that, for every c1 ∈ Ld
and c2,c3 ∈ Ld ∪Ln, returns a literal c4 ∈ Ln such that val(c4) is the probability that
val(c1) is greater than val(c2) and less than val(c3).

R. Keskisärkkä et al. / Optimizing RDF Stream Processing for Uncertainty Management 121

3.2. Syntax of RSP-QL*

RSP-QL� extends RSP-QL to support all the forms of graph patterns that have been in-
troduced for SPARQL and SPARQL� [15]. For brevity, we here cover only the core con-
structs of the language. An RSP-QL� query consists of two parts: an RSP-QL� pattern,
and a set of window declarations associated with IRIs that serve as names for the corre-
sponding windows in the query.

Definition 8. An RSP-QL�pattern is defined recursively as follows:

• Any BGP� is an RSP-QL�pattern.
• If n ∈ (V ∪I) and P is an RSP-QL�pattern, then (WINDOW n P) and

(GRAPH n P) are RSP-QL�patterns.
• If P1 and P2 are RSP-QL�patterns, then (P1 AND P2), (P1 OPT P2), and

(P1 UNION P2) are RSP-QL�patterns.
• If P is an RSP-QL�pattern and R is a built-in condition, then the expression

(P FILTER R) is an RSP-QL�pattern.
• If P is an RSP-QL�pattern, C is a comparison term and ?v is a variable that neither

occurs in P nor in C, then (P BIND?v C) is an RSP-QL�pattern.

Definition 9. A window declaration is a tuple (uS,α,β ,τ0) where uS ∈ I is an IRI (rep-
resenting the name of a named RDF� stream), α is a time duration (representing a win-
dow width), β is a time duration (representing a slide parameter), and τ0 is a times-
tamp (representing a start time).

Definition 10. An RSP-QL� query is a pair (ω,P) where ω is a partial function that
maps some IRIs in I to window declarations, and P is an RSP-QL�pattern such that for
every sub-pattern (WINDOW n P′) in P it holds that if n ∈ I, then ω is defined for n,
i.e., n ∈ dom(ω).

3.3. Semantics of RSP-QL*

The semantics of RSP-QL�has been described in previous work [15], but is here extended
to cover the notions of comparison terms (cf. Definition 1), bind expressions, and filter
expressions. The standard notions of compatibility, merging, and application of solution
mappings in SPARQL are adapted for solution�mappings as follows.

Definition 11. Two solution� mappings η , η ′ are compatible, denoted η ∼ η ′, if
η(?v) = η ′(?v) for every variable ?v ∈ dom(η)∩dom(η ′).

Definition 12. The merge of two compatible solution� mappings η and η ′, denoted by
η ∪η ′, is a solution�mapping η ′′ with the following three properties:

• dom(η ′′) = dom(η)∪dom(η ′),
• η ′′(?v) = η(?v) for all ?v ∈ dom(η), and
• η ′′(?v) = η ′(?v) for all ?v ∈ dom(η ′)\dom(η).

Definition 13. The application of a solution� mapping η to an RSP-QL� pattern P, de-
noted by η [P], is the RSP-QL�pattern obtained by replacing all variables in P according
to η .

R. Keskisärkkä et al. / Optimizing RDF Stream Processing for Uncertainty Management122

Next, we define the evaluation function for comparison terms, with respect to a given
solution� mapping. This can be regarded as a lifting of the definitions of comparison
terms and uncertainty functions into the SPARQL context.

Definition 14. Let eval(c,η) denote the evaluation function of a comparison term c
given a solution�mapping η :

• if c is a variable and c ∈ dom(η), then eval(c,η) is η(c);
• if c is a URI or a literal, then eval(c,η) is c;
• if c is of the form f (c1, ...,cn) where f denotes a SPARQL built-in predicate and

ci are comparison terms, then eval(c,η) is f (eval(c1,η), ...,eval(cn,η)), where f
is evaluated according to the SPARQL specification [19];

• if c is of the form rspu:add(c1,c2) such that eval(c1,η) ∈ Ld and eval(c2,η) ∈
Ld ∪Ln then return fadd(eval(c1,η),eval(c2,η));

• if c is of the form rspu:subtract(c1,c2) such that eval(c1,η)∈Ld and eval(c2,η)∈
Ld ∪Ln then return fsubtract(eval(c1,η),eval(c2,η));

• if c is of the form rspu:greaterThan(c1,c2) such that eval(c1,η) ∈ Ld and
eval(c2,η) ∈ Ld ∪Ln then return fgreaterThan(eval(c1,η),eval(c2,η));

• if c is of the form rspu:lessThan(c1,c2) such that eval(c1,η)∈Ld and eval(c2,η)∈
Ld ∪Ln then return flessThan(eval(c1,η),eval(c2,η));

• if c is of the form rspu:between(c1,c2,c3) such that eval(c1,η)∈Ld , eval(c2,η)∈
Ld ∪Ln and eval(c3,η) ∈ Ld ∪Ln then return fbetween(eval(c1,η),eval(c2,η),
eval(c3,η));

• else return an error.

Finally, let f ilter(R,η) be the evaluation function for the built-in condition R w.r.t. to
the solution�mapping η that returns a literal, IRI, or an error. We say that a filter condition
R satisfies some solution�mapping η if the evaluation of the constraint is true. That is, a
filter condition eliminates any solutions that, when substituted into the expression, either
result in an effective boolean value of false or produce an error. For a complete definition
of the evaluation of SPARQL built-in conditions we refer the reader to the work of Pérez
et al. [18] and the SPARQL specification [19]. The corresponding algebraic operations
join (��), union (∪), difference (\), left join (�����), projection (π), selection (σ), and bind
(ρ) are then defined as follows.

Definition 15. Let Ω, Ω1, and Ω2 be sets of solution* mappings, S ⊂ V be a finite set
of variables, R denote a built-in condition, and η0 be the empty solution� mapping (i.e.,
dom(η0) = /0).

Ω1 �� Ω2 = {η1 ∪η2 | η1 ∈ Ω1,η2 ∈ Ω2, η1 ∼ η2}
Ω1 ∪Ω2 = {η | η ∈ Ω1 or η ∈ Ω2}
Ω1 \Ω2 = {η ∈ Ω1 | for all η ′ ∈ Ω2, η �∼ η ′}
Ω1 ����� Ω2 = (Ω1 �� Ω2)∪ (Ω1 \Ω2)
πS(Ω) = {η | ∃η ′ ∈ Ω : η is a restriction of η ′ to the variables in S}
σR(Ω) = {η ∈ Ω | η satisfies R}
ρ?v←C(Ω) = {η ∪ η ′ | η ∈ Ω, ?v /∈ dom(η), and η ′ = η0 if eval(C,η) returns
an error, otherwise dom(η ′) = {?v} and η ′(?v) = eval(C,η)}

Based on the definitions of the algebra operators above, RSP-QL�patterns are eval-
uated over a background dataset and a set of named windows at a given timestamp.

R. Keskisärkkä et al. / Optimizing RDF Stream Processing for Uncertainty Management 123

Definition 16. Let W be a partial function that maps some IRIs in I to a window
over some RDF� stream, respectively, and P be an RSP-QL� pattern such that for ev-
ery sub-pattern (WINDOW n P′) in P with n ∈ I, it holds that W is defined for n, i.e.,
n ∈ dom(W). Furthermore, let D be an RDF� dataset, G be an RDF� graph, and τ be a
timestamp. Then, the evaluation of P over D and W at τ with G, denoted by �P�D,W,τ

G , is
defined recursively as follows:

1. If P is the empty BGP�, then �P�D,W,τ
G = {η0} where η0 is the empty solution�

mapping (i.e., dom(η0) = /0).
2. If P is a non-empty BGP�, then �P�D,W,τ

G = {η | dom(η) = var(P) and η [P] ∈ G}
where var(P) denotes the set of variables occurring in P.

3. If P is (GRAPH u P′), then �P�D,W,τ
G = �P′�D,W,τ

G′ where (u,G′) ∈ D.
4. If P is (GRAPH ?x P′), then �P�D,W,τ

G =
⋃

(u,G′)∈D�(GRAPH u P′)�D,W,τ
G′ .

5. If P is (WINDOW u P′), then �P�D,W,τ
G = �P′�DS(W), /0,τ

G′ where W =W (u) and G′

is the default graph of the window dataset denoted by DS(W).
6. If P is (WINDOW ?x P′), then �P�D,W,τ

G =
⋃

u∈dom(W)�(WINDOW u P′)�D,W,τ
G

7. If P is (P1 AND P2), then �P�D,W,τ
G = �P1�

D,W,τ
G �� �P2�

D,W,τ
G .

8. If P is (P1 UNION P2), then �P�D,W,τ
G = �P1�

D,W,τ
G ∪ �P2�

D,W,τ
G .

9. If P is (P1 OPT P2), then �P�D,W,τ
G = �P1�

D,W,τ
G ����� �P2�

D,W,τ
G .

10. If P is (P′ FILTER R), then �P�D,W,τ
G = σR(�P′�D,W,τ

G).
11. If P is (P′ BIND?v C), then �P�D,W,τ

G = ρ?v←C(�P′�D,W,τ
G).

It remains to define the semantics of RSP-QL� queries, which contain window dec-
larations in addition to an RSP-QL�pattern (cf. Definition 10).

Definition 17. Let S be a finite set of named RDF� streams and q = (ω,P) be an
RSP-QL� query such that for every IRI uS ∈ dom(ω) there exists a named RDF�

stream (uS,S) ∈ S . Furthermore, let D be an RDF� dataset and τ be a timestamp. The
evaluation of q over D and S at τ , denoted by �q�D,S,τ, is defined as �q�D,S,τ = �P�D,W,τ

G
where G is the default graph of D and W is a partial function such that dom(W) =
dom(ω) and for every IRI u ∈ dom(W) it holds that W (u) is the time-based window
W(S,x −α,x) with (uS,S) ∈ S , (uS,α,β ,τ0) = ω(u) and x = τ0 +α + β × i for the
greatest possible value of i ∈ N for which x < τ .

4. RSP-QL* Query Optimization

Following the definitions of the syntax and semantics of RSP-QL�, we now define a set of
RSP-QL�algebra equivalences. These equivalences can be applied to arbitrary RSP-QL�

patterns to support query rewriting. We say that two patterns P1 and P2 are equivalent,
denoted by P1 ≡ P2, if �P1�

D,W,τ
G = �P2�

D,W,τ
G for every RDF� dataset D, RDF� graph G,

timestamp τ , and set of named windows W .
Table 1 includes a subset of the equivalence rules that have previously been de-

scribed for the SPARQL algebra [18,20]. These rewrite rules also apply to RSP-QL�

patterns. For proofs of these equivalences, the reader is referred to Peréz et al. [18] and
Schmidt et al. [20]. Group I describes the common algebraic laws for query expressions.
For example, JAss and JComm show the commutativity and associativity of join expres-

R. Keskisärkkä et al. / Optimizing RDF Stream Processing for Uncertainty Management124

Table 1. Algebraic equivalence rules or RSP-QL�. P, P1 and P2 are RSP-QL�patterns, R, R1 and R2 are built-in
conditions, n is a URI or variable, and C is a comparison term.

I. Associativity, Commutativity, Distributivity

((P1 UNION P2) UNION P3)≡ (P1 UNION (P2 UNION P3)) (UAss)
((P1 AND P2) AND P3)≡ (P1 AND (P2 AND P3)) (JAss)
(P1 UNION P2)≡ (P2 UNION P1) (UComm)
(P1 AND P2)≡ (P2 AND P1) (JComm)
((P1 UNION P2) AND P3)≡ ((P1 AND P3) UNION (P2 AND P3)) (JUDistR)
((P1 UNION P2) OPT P3)≡ ((P1 OPT P3) UNION (P2 OPT P3)) (LUDistR)
II. Filter decomposition

(P FILTER R1 ∧R2)≡ ((P FILTER R1) FILTER R2) (FDecompI)
(P FILTER R1 ∨R2)≡ ((P FILTER R1) UNION (P FILTER R2) (FDecompII)
(P FILTER R1 ∧R2)≡ (P FILTER R2 ∧R1) (FReordI)
(P FILTER R1 ∨R2)≡ (P FILTER R2 ∨R1) (FReordII)
III. Filter pushing

((P1 UNION P2) FILTER R)≡ ((P1 FILTER R) UNION (P2 FILTER R)) (FUPush)
If ∀ ?v ∈ vars(R) : ?v ∈ cVars(P1) ∧ ?v �∈ pVars(P2)

((P1 AND P2) FILTER R)≡ ((P1 FILTER R) AND P2) (FJPush)
((P1 OPT P2) FILTER R)≡ ((P1 FILTER R) OPT P2) (FLPush)
If ∀ ?v ∈ vars(R) : ?v ∈ cVars(P)
((WINDOW n P) FILTER R)≡ ((WINDOW n (P FILTER R)) (FWPush)
IV. Bind pushing

((GRAPH n (P BIND?v C))≡ ((GRAPH n P) BIND?v C) (BGPush)
((WINDOW n (P BIND?v C))≡ ((WINDOW n P) BIND?v C) (BWPush)
If ∀ ?v ∈ vars(C) : ?v ∈ cVars(P1) ∧ ?v �∈ pVars(P2)

((P1 AND P2) BIND?v C)≡ ((P1 BIND?v C) AND P2) (BJPush)
((P1 OPT P2) BIND?v C)≡ ((P1 BIND?v C) OPT P2) (BLPush)

sions. Group II and III contain rules for the manipulation of filters, including filter de-
composition, filter reordering, and filter pushing. The final rule in group III has been
defined as part of this work and shows how filter pushing may be applied for window
patterns. Group IV includes additional equivalence rules for pushing bind expressions,
where BGPush and BWPush have been defined as part of this work.

Following the notation used by Schmidt et al. [20], we write cVars(P) to denote the
subset of variables that are certain to be bound when evaluating the pattern P, and use
pVars(P) to represent the set of variables that are possibly bound when evaluating the
pattern P. By vars(x) we denote the set of variables occurring in x, where x is either a
built-in condition, a comparison term, or an RSP-QL�pattern.

4.1. Query Optimization

SPARQL queries are built up around triple patterns, which result in a large number of
join operations. In SPARQL, these joins generally dominate the query execution time,
and optimizing queries with respect to these joins has received considerable attention
in literature [21,22]. Many of the heuristics that have been proposed for SPARQL can
also be applied for RSP-QL�queries, such as triple pattern reordering based on variable
counting. We use the most common heuristics proposed for SPARQL to provide a base-
line in this work, and we assume that data is stored in triple tables (or some similar struc-
ture) that provide fast index-based access to stored RDF�data for each possible order of

R. Keskisärkkä et al. / Optimizing RDF Stream Processing for Uncertainty Management 125

subject, predicate, and object (i.e., spo, sop, pso, pos, osp, and ops). Below, we describe
the heuristics considered in this work.

H1: Triple patterns should be ordered based on their selectivity, i.e., based on how
likely they are to produce smaller intermediate results [21,22]. Given the position and
the number of variables in a triple� pattern, we use the following order starting from the
most selective: (s, p,o)≺ (s,?,o)≺ (?, p,o)≺ (s, p,?)≺ (?,?,o)≺ (s,?,?)≺ (?, p,?)≺
(?,?,?). We consider a nested triple� pattern to be a variable if it contains at least one
variable.

H2: Graph patterns should be ordered based on their selectivity. A triple pattern
evaluated over a specific named graph has higher selectivity than one executed over all
graphs: (GRAPH u P)≺ (GRAPH ?x P). A triple pattern that does not appear in a graph
pattern is evaluated over the default graph.

H3: Filters should be broken up into their constituent pieces and applied as early as
possible. The idea of pushing filters is one of the most commonly applied optimization
strategies in database systems since filters reduce size of intermediate results.

H4: Filters containing references to uncertainty functions (cf. Definition 3.1) should
be applied as late as possible. The intuition is that there exists some trade-off between
evaluating a computationally expensive filter condition early and the degree to which the
size of the incoming results is reduced. If a filter condition only marginally decreases the
size of the intermediate results, it may be more efficient to apply the filter later in the
query evaluation when additional query constraints have been applied. Conversely, if the
number of join partners increases, the number of times the filter condition needs to be
evaluated increases. However, by employing caching, as we shall see later, the cost of
these additional filter evaluations is expected to be comparably small. When applied, the
heuristic supersedes H3 with respect to filters that reference uncertainty functions.

Further, we provide two technical optimization techniques related to uncertainty
functions. Lazy variables provide a mechanism for just-in-time evaluation of values cal-
culated using uncertainty functions. A lazy variable is resolved only when the variable
value is requested, and if the value is never used the evaluation can be skipped. The hy-
pothesis is that it will have a positive impact on query execution performance when un-
certainty functions are used in bind expressions, since unnecessary evaluations may be
avoided.

The second optimization involves the use of a cache to store calls to uncertainty
functions within a single query execution (i.e., the cache is cleared between query eval-
uations). Rather than evaluating a given uncertainty function multiple times for the same
input, the results can then be looked up in the cache. The cache in the implementation is
a basic in-memory hash table, where a serialization of the function calls and referenced
nodes are used as keys. If the query plan results in multiple calls to uncertainty functions
with the same inputs, e.g., if a filter is preceded by an increase in the number of join
partners, the hypothesis is that the cost of these additional filter evaluations will be small.

H1–H3 help minimize the impact of the order of operations in the original queries,
and provide the baseline for the evaluation presented in the next section.

5. Evaluation

In this section, we present an evaluation of the proposed heuristic (H4) and the two op-
timization techniques. The experiments were performed on a MacBook Pro 2015, with

R. Keskisärkkä et al. / Optimizing RDF Stream Processing for Uncertainty Management126

a quad-core 2.8 GHz Intel Core i7 processor, 16 GB of 1600MHz DDR3, and 8 GB
of memory allocated to the JVM. The prototype, along with the experiment files and
queries, is available under the MIT License1. The implementation of the engine has been
described in previous work [15,11] but has been extended to support the technical opti-
mizations and heuristics described in the previous section.

5.1. Experiment Setup

While a number of benchmarks have been proposed for evaluating RSP systems, such as
LSBench [23], SRBench [24], and CityBench [25], adopting these for the evaluation of
performance under uncertainty is out-of-scope for this work. Instead, we provide a con-
crete scenario for the evaluation based on a variation of the Tunnel Ventilation System
(TVS) scenario from Cagula et al. [10]. A TVS uses several types of sensors to detect
possible failures in tunnels, such as TVS malfunctioning. For the evaluation, we consider
two cases: 1) detect when the oxygen concentration is less than 18% while the tempera-
ture is above 30 degrees within the same tunnel sector, and 2) detect when two oxygen
sensors in a location report conflicting values, while the temperature is above 30.

We assume that sensors for measuring temperature and oxygen concentration are
evenly distributed along the length of a tunnel. A total of 1000 tunnel sectors are
equipped with four different sensor types each: two sensors measuring oxygen concen-
tration, and two measuring temperature. Each sensor type generates data into a sepa-
rate stream at a rate of 1 observation/second. The static dataset, consisting of around
23k triples, provides descriptions of tunnel sectors, observable properties, and sensors.
Measurement uncertainty is modeled as part of this static data for two of the sensor types
(i.e., similar to how accuracy is often represented in sensor data sheets). For the other two
sensor types, uncertainty is instead modeled as annotations on the streamed values. The
generated data streams were randomly sampled, such that 95% of the reported values
were within the scenario thresholds.

We define a total of 6 queries that are executed under different conditions.
Queries 1–3 focus on filters containing calls to uncertainty functions. Query 1 is eval-
uated over two sensor streams and generates a notification if the oxygen concentration
threshold is violated above some probability threshold and the reported temperature value
is above 30. Query 2 is evaluated over all four streams and requires all values to simul-
taneously violate the scenario thresholds with a probability greater than some threshold.
Query 3 is evaluated over three of the sensor streams and generates a notification if two
reported oxygen concentrations differ with a probability greater than some threshold and
the reported temperature is above 30 degrees.

Queries 4–6 are similar to queries 1–3, but rather than filtering on probability thresh-
olds they bind the uncertainty function results to variables and report these as part of the
query result.

The query heuristics do not perform any reordering of window patterns, and to re-
duce ordering bias, we execute two versions of each query (a and b) with reversed win-
dow orders. Due to space constraints, we include here only the query shown in Listing 22.

1https://github.com/keski/RSPUEngine
2The full list of queries are available at https://github.com/keski/RSPUEngine

R. Keskisärkkä et al. / Optimizing RDF Stream Processing for Uncertainty Management 127

REGISTER STREAM <warning/tvs> COMPUTED EVERY PT4S AS
SELECT ?location ?oxValue ?tempValue
FROM NAMED WINDOW <w1> ON <http://stream/oxygen> [RANGE PT10S STEP PT1S]
FROM NAMED WINDOW <w2> ON <http://stream/temperature> [RANGE PT10S STEP PT1S]
WHERE {

WINDOW <w1> {
GRAPH ?g1 {

?o1 sosa:hasSimpleResult ?oxValue ;
sosa:hasFeatureOfInterest ?location .

<< ?o1 sosa:hasSimpleResult ?oxValue >> rspu:uncertainty ?unc .
The oxygen is below 0.18 with a probability of at least 80%
FILTER(rspu:lessThan(rspu:add(?unc, ?oxValue), 0.18) >= 0.80)

}
}
WINDOW <w2> {

GRAPH ?g2 {
?o2 sosa:hasSimpleResult ?tempValue ;

sosa:hasFeatureOfInterest ?location .
The reported temperature is greater than 30
FILTER(?tempValue > 30)

}
}

}

Listing 2: The query passes the location, oxygen concentration, and temperature to the
output stream when the reported oxygen concentration is less than 18% with a probability
of at least 0.80, and the reported temperature at the same location is above 30 degrees.
Prefixes left out for brevity.

5.2. Results

Query 1–3 are used to evaluate the impact of the H4 heuristic for different probability
thresholds. An increase in probability threshold value corresponds to an increase in filter
selectivity. The term selectivity is used to refer to the degree to which the result size is
reduced when applying the filter. A small selectivity value is thus highly selective (i.e.,
it greatly reduces the size of the result). The caching optimization is applied both for the
baseline and the H4 heuristic, while the lazy variable mechanism has no impact for these
queries.

The results of executing queries 1–3 for varying thresholds are presented in Figure 1.
The impact of applying the H4 heuristic differs between queries, and with respect to the
selectivity of the uncertainty filters. For example, in query 2b applying the H4 heuristic
leads to an increase in query execution times for all probability thresholds. On the other
hand, in queries 1a and 3a, the H4 heuristic reduces query execution time by up to an
order of magnitude across all probability thresholds.

Queries 4–6 focus instead on the impact of the lazy variable mechanism and caching.
These queries include no uncertainty filters, and the application of the H4 heuristic has no
impact on these queries. The results of executing the queries are shown in Figure 2. The
lazy variable mechanism reduces query execution time across all test queries, from a few
percents up to an order of magnitude in query 6a. The lazy variable mechanism improves
query execution performance whenever unresolved variable bindings are trimmed from

R. Keskisärkkä et al. / Optimizing RDF Stream Processing for Uncertainty Management128

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
25

00

Query 1a
0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
25

0

Query 1b

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
25

00

Query 2aEx
ec

ut
io

n
Ti

m
e

(m
s)

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
20

00

Query 2b

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
20

00

Query 3a
0.0 0.2 0.4 0.6 0.8 1.0

0
40

80
12

0
Query 3b

Baseline H4

Figure 1. Average query execution times over 20 query executions for queries 1–3. Letters a and b indicate
semantically equivalent queries but with reversed window ordering.

the result, and that the overhead of using lazy variables is negligible. The results also
show that caching of uncertainty functions generally has a positive impact on query exe-
cution performance. However, in query 4a we see that the cache increases overall query
execution, showing that the cost of maintaining the cache can add overhead to overall
execution if the number of cache hits is low.

Query 4a Query 4b

0
20

0
40

0
60

0
80

0
Ex

ec
ut

io
n

Ti
m

e
(m

s)

Query 5a Query 5b

0
20

00
40

00
60

00
80

00

Query 6a Query 6b

0
50

0
10

00
15

00
20

00

Lazy + Cache
Lazy

Cache
No optimization

Figure 2. Average query execution times over 20 query executions for queries 4–6, where a and b represent
queries with reversed window ordering.

5.3. Follow-up Experiment

To further study how the H4 heuristic impacts performance under different conditions,
we generate an independent dataset to support a more precise measure of filter selec-
tivity, and as well as control of the join cardinality between streams (i.e., the factor by
which the results will increase when the two windows are joined). We produce two event
streams that report randomly sampled values annotated with measurement uncertainty.
Each event in the first stream contains four cardinality properties that link it to events in

R. Keskisärkkä et al. / Optimizing RDF Stream Processing for Uncertainty Management 129

0
10

00
20

00
30

00
Join cardinality: 100

0
20

0
40

0
60

0 Join cardinality: 10
0

10
0

30
0

0.0 0.2 0.4 0.6 0.8 1.0

Join cardinality: 0.1

0
10

0
30

0

0.0 0.2 0.4 0.6 0.8 1.0

Join cardinality: 0.01

Selectivity

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Baseline H4

Figure 3. Query execution time for different join cardinalities with varying filter selectivity.

the second stream occurring at the same timestamp. For example, the cardinality property
representing a 1-to-100 cardinality maps every event in stream 1 to exactly 100 events in
stream 2. An uncertainty filter is applied to the contents of the first stream window. The
results of the experiments are presented in Figure 3. The caching optimization is applied
both for the baseline and the H4 heuristic.

The results show that when the join cardinality between the windows is high (i.e.,
the join increases the intermediate result size), the cost of performing the join operation
dominates the query execution time, and the baseline outperforms the use of H4, regard-
less of filter selectivity. However, as the join cardinality decreases, the cost of applying
the uncertainty filter becomes the dominating factor and the H4 heuristic then outper-
forms the baseline across all selectivity thresholds. Generally, applying the H4 heuristic
will reduce the number of uncertainty functions that need to be resolved whenever there
is a reduction in the number of join partners in the rest of the query pattern. Caching
ensures that no uncertainty function will have to be evaluated more than once for the
same input, but an increase in the number of join partners can still lead to a high number
of cache look-ups that can be detrimental to query execution performance.

6. Conclusions and Future Work

The time required for performing joins between basic graph patterns is generally the
dominating factor of execution times in SPARQL processing [21,22]. Pushing filters in
order to apply them as early as possible to reduce intermediate results is therefore a
common optimization technique. This is true also in the RSP context, but when filters
contain calls to uncertainty functions that may be associated with relatively high costs,
filter pushing can have the opposite effect. In this paper, we have evaluated a heuristic
that instead pulls filters containing references to uncertainty functions, and thereby ex-
ecutes these filters late. The impact of the heuristic depends on both the selectivity of
the uncertainty filters, the join cardinalities of subsequent query patterns, and the cost
of evaluating the uncertainty filters. Generally, query execution times are reduced when
uncertainty filters are pulled if the number of join partners are reduced by subsequent
query patterns, since some filter executions can then be avoided.

R. Keskisärkkä et al. / Optimizing RDF Stream Processing for Uncertainty Management130

The two technical optimization techniques proposed to improve query execution
performance, have a positive impact on query execution times under most conditions.
Caching avoids repeated evaluation of uncertainty functions for the same input, but main-
taining the cache and performing cache look-ups also adds to overall execution time.
The use of lazy variables reduces the cost of query execution for all affected queries,
with performance gains ranging from a few percent to an order of magnitude since no
uncertainty function will be executed unless its results are actually used.

In order to effectively combine these findings with other query optimization tech-
niques, such as reordering of operators during query execution, the order of window oper-
ations should also be taken into consideration, since it could significantly improve query
execution performance. Methods for estimating filter selectivity, improving join cardi-
nality estimation, and switching between query execution strategies to adapt to changing
data characteristics also remain important areas for future research.

Acknowledgments

Olaf Hartigs’s contributions to this work has been funded in equal parts by the Swedish
Research Council (Vetenskapsrådet, project reg. no. 2019-05655) and the CENIIT pro-
gram at Linköping University (project no. 17.05).

References

[1] Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred Hauswirth. A Native and Adap-
tive Approach for Unified Processing of Linked Streams and Linked Data. In The Semantic Web – ISWC
2011, pages 370–388, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[2] Calbimonte, Jean-Paul and Corcho, Oscar and Gray, Alasdair J. G. Enabling Ontology-Based Access to
Streaming Data Sources. In The Semantic Web – ISWC 2010, pages 96–111, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[3] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael Gross-
niklaus. Querying RDF Streams with C-SPARQL. ACM SIGMOD Record, 39(1):20–26, 9 2010.

[4] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic. Stream Reasoning and Complex
Event Processing in ETALIS. Semant. Web, 3(4):397–407, 2012.

[5] Minh Dao-Tran and Danh Le-Phuoc. Towards Enriching CQELS with Complex Event Processing and
Path Navigation. In HiDeSt 2015, pages 2–14, 2015.

[6] Daniele Dell’Aglio, Minh Dao-Tran, Jean-Paul Calbimonte, Danh Le Phuoc, and Emanuele Della Valle.
A Query Model to Capture Event Pattern Matching in RDF Stream Processing Query Languages. In
EKAW 2016, pages 145–162, 2016.

[7] Syed Gillani, Antoine Zimmermann, Gauthier Picard, and Frédérique Laforest. A Query Language for
Semantic Complex Event Processing: Syntax, Semantics and Implementation. Semant. Web, 10:53–93,
2019.

[8] Elias Alevizos, Anastasios Skarlatidis, Alexander Artikis, and George Paliouras. Probabilistic Complex
Event Recognition: A Survey. ACM Comput. Surv., 50(5), 2017.

[9] Alexander Artikis, Opher Etzion, Zohar Feldman, and Fabiana Fournier. Event Processing Under Un-
certainty. In DEBS’12, pages 32–43, 2012.

[10] Gianpaolo Cugola, Alessandro Margara, Matteo Matteucci, and Giordano Tamburrelli. Introducing Un-
certainty in Complex Event Processing: Model, Implementation, and Validation. Computing, 97(2):103–
144, 2015.

[11] Robin Keskisärkkä, Eva Blomqvist, Leili Lind, and Olaf Hartig. Capturing and Querying Uncertainty
in RDF Stream Processing. In EKAW 2020, pages 37–53, 2020.

[12] Alessandro Margara, Jacopo Urbani, Frank van Harmelen, and Henri Bal. Streaming the Web: Reason-
ing over Dynamic Data. J. Web Semant., 25:24–44, 2014.

R. Keskisärkkä et al. / Optimizing RDF Stream Processing for Uncertainty Management 131

[13] Daniele Dell’Aglio, Jean-Paul Calbimonte, Emanuele Della Valle, and Oscar Corcho. Towards a Unified
Language for RDF Stream Query Processing. In Revised Selected Papers of the ESWC 2015 Satellite
Events on The Semantic Web, pages 353–363, 2015.

[14] Daniele Dell’Aglio, Emanuele Della Valle, Jean-Paul Calbimonte, and Oscar Corcho. RSP-QL Seman-
tics: A Unifying Query Model to Explain Heterogeneity of RDF Stream Processing Systems. Int. J.
Semant. Web Inf. Syst., 10(4):17–44, 2014.

[15] Robin Keskisärkkä, Eva Blomqvist, Leili Lind, and Olaf Hartig. RSP-QL*: Enabling Statement-Level
Annotations in RDF Streams. In SEMANTiCS 2019, 2019.

[16] Olaf Hartig and Bryan Thompson. Foundations of an Alternative Approach to Reification in RDF.
CoRR, abs/1406.3399, 2014.

[17] Olaf Hartig. Foundations of RDF* and SPARQL* – An Alternative Approach to Statement-Level Meta-
data in RDF. In Proc. of the 11th AMW Workshop, 2017.

[18] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and Complexity of SPARQL. ACM
Trans. Database Syst., 34(3), 2009.

[19] Eric Prud’hommeaux, Steve Harris, and Andy Seaborne. SPARQL 1.1 Query Language. Technical
report, W3C, 2013.

[20] Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of SPARQL Query Optimization. In
Proc. of the 13th Int. Conf. on Database Theory, pages 4–33, 2010.

[21] Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and Dave Reynolds. SPARQL
Basic Graph Pattern Optimization Using Selectivity Estimation. In WWW ’08, 2008.

[22] Petros Tsialiamanis, Lefteris Sidirourgos, Irini Fundulaki, Vassilis Christophides, and Peter Boncz.
Heuristics-Based Query Optimisation for SPARQL. In Proc. of EDBT, 2012.

[23] Danh Le-Phuoc, Minh Dao-Tran, Minh-Duc Pham, Peter Boncz, Thomas Eiter, and Michael Fink.
Linked Stream Data Processing Engines: Facts and Figures. In The Semantic Web – ISWC 2012, volume
7650, pages 300–312. Springer, Berlin, Heidelberg, 2012.

[24] Haopeng Zhang, Yanlei Diao, and Neil Immerman. Recognizing Patterns in Streams with Imprecise
Timestamps. Proc. VLDB Endow., 3(1-2):244–255, 2010.

[25] Muhammad Intizar Ali, Feng Gao, and Alessandra Mileo. CityBench: A Configurable Benchmark to
Evaluate RSP Engines Using Smart City Datasets. In The Semantic Web - ISWC 2015, pages 374–389,
Cham, 2015. Springer.

R. Keskisärkkä et al. / Optimizing RDF Stream Processing for Uncertainty Management132

