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Abstract. The last decades have witnessed significant advancements in terms of
data generation, management, and maintenance. This has resulted in vast amounts
of data becoming available in a variety of forms and formats including RDF. As
RDF data is represented as a graph structure, applying machine learning algorithms
to extract valuable knowledge and insights from them is not straightforward, es-
pecially when the size of the data is enormous. Although Knowledge Graph Em-
bedding models (KGEs) convert the RDF graphs to low-dimensional vector spaces,
these vectors often lack the explainability. On the contrary, in this paper, we in-
troduce a generic, distributed, and scalable software framework that is capable of
transforming large RDF data into an explainable feature matrix. This matrix can
be exploited in many standard machine learning algorithms. Our approach, by ex-
ploiting semantic web and big data technologies, is able to extract a variety of ex-
isting features by deep traversing a given large RDF graph. The proposed frame-
work is open-source, well-documented, and fully integrated into the active commu-
nity project Semantic Analytics Stack (SANSA). The experiments on real-world
use cases disclose that the extracted features can be successfully used in machine
learning tasks like classification and clustering.

Keywords. RDF Graph, Prepositionalization, Feature Extraction, Big Data,
Distributed Computing, Scalable Analytics, SANSA

1. Introduction

With the rapidly growing amount of data available on the Internet, it becomes necessary
to develop a set of tools to extract meaningful and hidden information from the online
data. The Semantic Web enables a structural view of the existing data on the web and
provides machine-readable formats [1] as the Resource Description Framework (RDF)2.
RDF has been introduced by the World Wide Web Consortium3 as a standard to model
the real world in the form of entities and relations between them. RDF data are a collec-
tion of triples < sub ject, predicate,ob ject > which tend to have rich relationships, form-
ing a potentially very large and complex graph-like structure. Figure 1 shows a sample
RDF.

1Corresponding Author: Farshad Bakhshandegan Moghaddam, SDA Research Group, University of Bonn,
Bonn, Germany; E-mail: farshad.moghaddam@uni-bonn.de

2https://www.w3.org/RDF/
3https://www.w3.org
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Figure 1. A Sample RDF Graph

Currently, many companies in the fields of science, engineering, and business, in-
cluding bioinformatics, life sciences, business intelligence, and social networks, publish
their data in the form of RDF [2]4,5. In addition, the Linked Open Data Project initia-
tive [3] helped the Semantic Web to gain even more attention in the past decade. Cur-
rently, the Linked Open Data (LOD) cloud comprises more than 10,000 datasets avail-
able online6 using the RDF standard. Nowadays, RDF data can have sizes up to billions
of triples7.

Besides this, Machine Learning, a field of discovering how machines can perform
tasks without being explicitly programmed to do so, is growing and finding its way in
human daily life. Some prominent examples are autonomous driving, face detection,
weather forecasting, etc. Recently with the rapid growth of computational power, training
machine learning algorithms at scale is getting much more feasible. However, most of
the well-known machine learning algorithms for classification, regression, and clustering
need to work with a standard representation of data, i.e. a feature matrix. In this format,
the data is mostly presented as a 2D matrix, in which rows present the data points and
columns indicate the features. Normally, for supervised learning, one (or more) of the
columns can be considered as a label (target) for the given row (data point).

Due to the complex graph nature of RDF data, applying standard machine learn-
ing algorithms to this data is cumbersome. Although there are efforts in the community
to incorporate RDF graphs directly in the machine learning algorithms, they are mostly
focused on the structural properties of RDF datasets [4,5,6,7] and offer limited support
for RDF literals. Moreover, the challenges in the current big data era (limited computa-
tional resources) cause the traditional analytical approaches to mostly fail to operate on
large-scale data.

Even though Knowledge Graph Embeddings (KGE) are getting popular as a
paradigm to obtain low-dimensional feature representations of Knowledge Graphs (KG),

4http://www.openphacts.org
5https://ontop-vkg.org
6http://lodstats.aksw.org/
7https://www.w3.org/wiki/DataSetRDFDumps
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most of them do not exploit literals in their learning process (an exception is [8] for nu-
merical literal values). Moreover, the feature vectors obtained by KGE models are latent
features, which are not explainable. Latent embeddings lose locatable information such
as the numerical annotation stored in literals, e.g., salary of colleagues, timestamp of
buying a certain item, runtime of a movie. The loss of such numeric or timestamp fea-
tures in multi-modal knowledge graphs need to be avoided in many use cases, especially
those that use RDF for data integration and exploiting such features.

To tackle the aforementioned issues, we propose Literal2Feature, a generic, dis-
tributed, and scalable software framework which is able to automatically transform a
given RDF dataset to a standard feature matrix (also dubbed Prepositionalization) by
deep traversing the RDF graph and extracting literals to a given depth. Literal2Feature
enables the use of a wide range of machine learning algorithms for the Semantic Web
community. The proposed method is able to extract features automatically by creating
a SPARQL query to produce the feature matrix. All steps are performed automatically
without human intervention (details in Section 3). In addition, Literal2Feature is in-
tegrated into the SANSA stack [9] and interacts with the different SANSA computa-
tional layers. This integration enables sustainability, as SANSA is an actively maintained
project, and uses the community ecosystem (mailing list, issue trackers, continuous in-
tegration, web-site, etc.). In contrast to KGEs, our proposed approach successfully uti-
lizes literals as extracted features and provides high-level explainability for each feature.
Moreover, our approach enables ML practitioners to select the features of interest, based
on learning objectives and scenarios.

To summarize, the main contributions of this paper are as follows:

• Introducing a distributed generic framework that can automatically extract seman-
tic features from an RDF graph

• Integrating the approach into the SANSA stack
• Covering the code by unit tests, documenting it in Scala docs [10] and providing

a tutorial [11]
• Making Literal2Feature and the framework open source and publicly available on

Github8

• Evaluation of the results over multiple datasets on classification and clustering
scenarios, and comparing it with similar approaches

• Empirical evaluation of scalability

The rest of the paper is structured as follows: The related work is discussed in Sec-
tion 2. Literal2Feature workflow, and implementation are detailed in Section 3. The use-
cases are discussed in Section 4. Section 5 covers the evaluation of the Literal2Feature
and demonstrates the scalability. Finally, we conclude the paper in Section 6.

2. Related Work

This section presents prior related studies on Prepositionalization, Graph Embeddings,
and Machine Learning on Semantic Data.

8https://github.com/SANSA-Stack/SANSA-Stack
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Prepositionalization. In the recent years, a variety of approaches have been proposed
for generating features from LOD. Many of these methods assume a manual design of
the feature selection mechanism and in most situations these methods require the user to
create a SPARQL query to retrieve the features. For instance, LiDDM [12] enables the
users to specify SPARQL queries for retrieving features from RDF graphs that can be
used in various machine learning algorithms. Similarly, an automatic feature generation
approach is proposed in [13], where the user has to define the type of features in the
form of SPARQL queries. Another approach, RapidMiner9 semweb plugin [14] prepro-
cesses RDF data using user-specified SPARQL queries, such that the data can be han-
dled in RapidMiner. Another similar approach is FeGeLOD [15] and its successor, the
RapidMiner Linked Open Data Extension [16]. FeGeLOD is an unsupervised approach
for enriching data with features derived from LOD. This approach uses six unsupervised
feature generation techniques to explore the data and fetches the features.

Our approach differs from the above-mentioned methods since it does not require
any predefined SPARQL query to directly extract the features. Moreover, our approach
can be scaled horizontally over a cluster of nodes to handle large amounts of data.

Graph Embeddings. Beside the above-mentioned classical methods, our work is also
related to graph embeddings such as [17,18,19,20]. Although these approaches convert
entities to dense vectors, however, their result is usually not explainable due to latent rep-
resentations of entities. Moreover, most of them ignore literals in their learning process.
RDF2Vec [17] is an approach for learning latent entity representations in RDF graphs. It
first converts RDF graphs into sequences of graph random walks and Weisfeiler-Lehman
graph kernels, and then adopts CBOW and Skip-gram models on the sequences to build
entity representations. TransE [18] is a geometric model that assumes that the tail em-
beddings are close to the sum of the head and relation embeddings, according to the cho-
sen distance function. DistMult [19] is a matrix factorization model that allows all rela-
tion embeddings to be diagonal matrices, which reduces the space of parameters to be
learned and results in a relatively easy model to train. SimplE [20], like DistMult, forces
the relation embeddings to be diagonal matrices but extends it by a) associating two dif-
ferent embeddings, eh and et with each entity e, depending on whether e is head or tail
b) associating two distinct diagonal matrices, r and r−1, with each relation r, expressing
the relation in its normal and inverse direction.

Our approach differs from the KGE methods, as it only utilizes literals from knowl-
edge graphs to generate the feature vectors while demonstrating a high-level of explain-
ability and relatedness.

Machine Learning on Semantic Data. There are numerous centralized machine
learning frameworks and algorithms for RDF data. For example, TensorLog [21] and
ProPPR [4] are recent frameworks for efficient probabilistic inference in first-order logic.
AMIE [5] and AMIE+ [22] learn association rules from RDF data. DL Learner [7] is a
framework for inductive learning on the Semantic Web. [6] provides a review of statisti-
cal relational learning techniques for knowledge graphs.

Although there are some efforts in the community to incorporate RDF data in machine
learning pipelines, however, to the best of our knowledge, Literal2Feature is the first in a
row which deeply extracts literals as a feature matrix from the RDF data in a distributed

9http://www.rapidminer.com/
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Figure 2. System Architecture Abstract Overview

and scalable manner. One may argue that these features can be extracted from the on-
tologies as well [23]. However, it should be noted that 1) ontologies can be large and not
fully used in the data 2) there may not be any ontologies associated with a given RDF
data set.

3. Literal2Feature

In this section, we present the system architecture of Literal2Feature. The main goal of
the framework is to retrieve literals for each entity based on the predefined graph depth.
In other words, Literal2Feature, by deeply traversing the RDF graph, is able to gather
literals for each entity up to a predefined level and consider them as a feature vector
for the given entity. We believe that literals contain valuable information for each entity
which can be used for any subsequent machine learning pipeline. Although other features
such as a number of specific predicates (e.g. foaf:knows which can count the number
of friends of each person) or existence of a type relation (e.g. a boolean value which is
True if a specific type relation exists such as rdf:type dbo:Person) can also be
retrieved from an RDF graph, however, in Literal2Feature, we neglect them and only
focus on the literals.

Figure 2 shows the high-level system architecture overview. The core section of the
framework consists of five main components: 1) Seed Generator 2) Graph Search 3) Path
Extractor 4) SPARQL Generator 5) SPARQL Executor. Below, each part is discussed in
more detail.

3.1. Components

3.1.1. Seed Generator Component

The input of the system is an RDF graph G and a set of RDF triples T . The triples define
the entities that the user is interested to generate features for. T will automatically for-
mulate a SELECT SPARQL query which is used to generate only starting points for the
deep search. In other words, this query specifies the entities for which the user is inter-
ested to extract features for (e.g. in Figure 1, all the persons). By executing the SELECT

F. Bakhshandegan Moghaddam et al. / Literal2Feature78
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Figure 3. Impact of different factors on the runtime and the number of extracted features (a, b, and c are
experimented on the Engie dataset (Section 5.1) and d on a synthetic data on a single machine)

query over the given RDF data, the starting points of search (seeds) are generated. These
seeds are sorted based on the number of outgoing links. The higher the number of outgo-
ing links, the higher chance of generating more features (see Section 3.1.2). To execute
the query, Sparklify [24], a SANSA built-in distributed SPARQL executor is used.

3.1.2. Graph Search Component

The next step executes a graph search algorithm starting from the seed nodes. Without
loss of generality, in this framework we use two different strategies, a) full graph search
and b) approximated graph search. For the full graph search, we use Breadth-First Search
(BFS) [25] to be able to traverse the entire graph. For the approximation, we use Random
Walk model [26]. In both approaches, the user will have full control over the depth, the
number of walks, and direction of the search (downward, upward). There is a relation
between extracted feature completeness and the search execution time with the search
strategy. Full graph search is able to extract all the existing features, but the execution
time is higher than the random walk model. The three factors that have an impact on
the number of extracted features and the execution time are a) the depth of search b) the
average branching factor of nodes of the graph c) the number of random walks (only in
the Random Walk model). Figure 3 depicts the impact of each factor. It can be seen that
most of the parameters have an exponential impact on the full graph search. However,
the Random Walk model depicts a linear and logarithmic behavior in terms of time and
the number of extracted features.

Each search walk (regardless of the selected search method) generates a path and
continues until one of the following conditions occurs:

• Reaching a node which is a literal node

F. Bakhshandegan Moghaddam et al. / Literal2Feature 79



• Exceeding the pre-configured length of the walk

3.1.3. Path Generator Component

By considering the nodes and edge labels (RDF entities and properties) we could gen-
erate property paths. Each properties path encodes all needed properties to reach a
literal from the given seed node. For example, based on Figure 1, the sequence of
John jr->hasParent->Mary->age encodes the path which can fetch the “age of
the mother of John jr”. Each walk of the search algorithm generates a properties path.
Due to the probabilistic nature of the algorithms (in the Random Walk method) and rep-
etition in the RDF graphs, there is a chance of having duplicated paths. The final output
of this component is distinct properties paths.

3.1.4. SPARQL Generator Component

By gathering all property paths, ignoring the entities, and only keeping properties,
each path is transformed automatically to a SPARQL query. For instance, the above-
mentioned example will be transformed to ->hasParent->age and then to the fol-
lowing SPARQL query (Listing 1, prefixes have been omitted for simplicity). Due to the
data sparsity issue and as all the seeds may not have all the possible properties, each
properties-path is wrapped with an Optional block to ensure the successful generation
of the final result. To have explanatory names for the projected variables, the prefix part
of each RDF property is omitted and after splitting based on underscore character, the
last part of each property is selected and concatenated (see Listing 1). These names are
human-readable and demonstrate explainability for each feature.

Listing 1: Sample result of the generated SPARQL query

SELECT ?person ?hasParent_age WHERE {
?person a Person.
OPTIONAL {
?person hasParent ?parent.
?parent age ?hasParent_age.

}
}

3.1.5. SPARQL Executor Component

After generating the SPARQL query based on the generated properties paths, we use the
built-in SPARQL engine in SANSA to execute the query over the given RDF data. The
result of this component is the desired feature matrix. Due to the structure of the graph,
the SPARQL query may result in multiple rows for a single entity. Based on Figure 1,
this behavior can be seen when we want to extract the age of a parent of John jr as
he has two parents. In such a case, one of the rows is selected randomly and kept for
the subsequent machine learning pipeline. In future work, we plan to use other strategies
for merging different rows by applying aggregator functions such as taking an average,
median, etc.
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Figure 4. Literal2Feature Execution Pipeline (Best viewed in color)

3.2. Implementation

As the programming language of SANSA is Scala10, we have selected this language and
its APIs in Apache Spark to provide the distributed implementation of Literal2Feature.
Moreover, we benefit from SANSA IO and Query layers. Technically, Literal2Feature
can be divided into the following steps 1) Read RDF data as a data frame 2) gener-
ate seeds 3) filter seeds 4) traverse the graph by joining data frames up to a certain
depth 5) select paths ending with literals 6) convert the paths to SPARQL 7) execute
the SPARQL and output the result, as shown in Figure 4 which depicts the framework
execution pipeline.

4. Use Cases

Literal2Feature is a generic tool that can be used in many use cases. To validate this, we
develop use case implementations in several domains and projects.

PLATOON Digital PLatform and analytic TOOls for eNergy (PLATOON11) is a Hori-
zon 2020 Project aiming to deploy distributed/edge processing and data analytics tech-
nologies for optimized real-time energy system management in a simple way for the
energy domain. PLATOON uses SANSA Stack as a generic data analytics framework
in which Literal2Feature is an integral module in the pipeline. Literal2Feature makes it
possible for non-experts to deduce the features and enrich their use case related data.

Engie Engie SA12 is a French multinational electric utility company that operates in
the fields of energy transition, electricity generation and distribution, natural gas, nuclear,
renewable energy, and petroleum. Together with Engie we are working on a dataset re-
lated to accidents that occurred in France. One of the major challenges is the prediction
and classification of the accidents in an effective and scalable manner. In order to per-
form this task efficiently and effectively, Literal2Feature integrated into SANSA stack is
an integral module for classification task.

10https://www.scala-lang.org/
11https://cordis.europa.eu/project/id/872592/de
12https://www.engie.com

F. Bakhshandegan Moghaddam et al. / Literal2Feature 81



5. Experimental Results

In this section, we present two sets of experiments to analyze different aspects of Lit-
eral2Feature. In the first experiment, the quality and usefulness of the extracted features
will be analyzed over classification and clustering scenarios and in the second experi-
ment, the scalability of the proposed framework will be investigated.
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5.1. Experiment A: Assessment of the extracted Features

Literal2Feature can be used in many scenarios, from statistical analysis to classification
and clustering. In this section, we analyze the quality of the extracted features for classi-
fication and clustering scenarios. To this end, two datasets have been exploited. Engie ac-
cident dataset13 and Carcinogenesis dataset [27]. The accident dataset contains the data
about accidents occurred in France in 2018. The Carcinogenesis dataset contains infor-
mation about drug molecules and their features. An overview of the datasets is given in
Table 1.

5.1.1. Classification

For the above-mentioned datasets, three classification scenarios have been defined as
follows (all scenarios are multiclass single-label classification problem):

1- Accident classification based on how dangerous was an accident (4 classes).
2- Accident classification based on which side of the vehicle was shocked in the

accident (10 classes).
3- Carcinogenic drugs classification (2 classes)

As a baseline for feature vectors, FeGeLOD [15], RDF2Vec [17], TransE [18], Sim-
plE [20], and DistMult [19] are selected (KGEs are trained by OpenKE14 on NVIDIA
GeForce GTX 1080 Ti). For the learning algorithms, we selected Random Forest (RF),
Logistic Regression (LR), Multi-Layer Perceptron (MLP), and XGBoost (XG)[28] to

13Can not be publicly published due to Intellectual Property concerns
14https://github.com/thunlp/OpenKE
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Table 1. Dataset statistics (GT=Ground Truth)

Dataset Format #Triples |GT| Classification Scenario Classes

Accident N-Triple 5,961,107 57,783
How dangerous is an accident 4
Which side of vehicle is shocked 10

Carcinogenesis OWL 74,567 298 Is a drug carcinogenesis 2

Table 2. F1-Measure (macro) evaluation results

Approach Accident Scenario 1 Accident Scenario 2 Carcinogenesis

FeGeLOD[15]

RF 0.17 ± 0.01 0.05 ± 0.001 0.59 ± 0.07
LR 0.20 ± 0.02 0.05 ± 0.003 0.61 ± 0.06
MLP 0.18 ± 0.01 0.05 ± 0.001 0.58 ± 0.07
XG 0.18 ± 0.02 0.05 ± 0.004 0.58 ± 0.05

RDF2Vec[17]

RF 0.17 ± 0.004 0.05 ± 0.0001 0.41 ± 0.13
LR 0.25 ± 0.02 0.07 ± 0.006 0.49 ± 0.12
MLP 0.23 ± 0.02 0.09 ± 0.008 0.51 ± 0.18
XG 0.23 ± 0.02 0.07 ± 0.006 0.42 ± 0.10

TransE[18]

RF 0.16 ± 0.001 0.05 ± 0.0001 0.52 ± 0.09
LR 0.17 ± 0.002 0.05 ± 0.001 0.56 ± 0.06
MLP 0.24 ± 0.006 0.08 ± 0.001 0.56 ± 0.06
XG 0.24 ± 0.005 0.06 ± 0.001 0.51 ± 0.06

DistMult[19]

RF 0.22 ± 0.01 0.05 ± 0.0001 0.50 ± 0.06
LR 0.22 ± 0.005 0.05 ± 0.001 0.53 ± 0.06
MLP 0.26 ± 0.005 0.09 ± 0.004 0.54 ± 0.04
XG 0.37 ± 0.04 0.09 ± 0.002 0.58 ± 0.05

SimplE[20]

RF 0.22 ± 0.01 0.05 ± 0.0001 0.45 ± 0.09
LR 0.23 ± 0.003 0.05 ± 0.001 0.48 ± 0.04
MLP 0.28 ± 0.004 0.09 ± 0.004 0.53 ± 0.04
XG 0.36 ± 0.03 0.08 ± 0.003 0.50 ± 0.07

Literal2Feature

RF 0.37 ± 0.007 0.10 ± 0.01 0.57 ± 0.07
LR 0.41 ± 0.002 0.12 ± 0.005 0.62 ± 0.08

MLP 0.46 ± 0.006 0.21 ± 0.005 0.48 ± 0.07
XG 0.38 ± 0.18 0.19 ± 0.07 0.53 ± 0.04

cover a range from decision trees to neural networks. As the accident dataset has imbal-
anced labels (see Figures 5,6), only F1-measure (macro) is reported. The results are sum-
marised in Table 2. These experiments have been conducted on a single node with a Intel
Core i5 CPU and 8GB of RAM. For FeGeLOD, its original default configurations have
been preserved, and for KGEs the dimension of vectors has been set to 200. Moreover,
all algorithms have been trained using 5-fold cross-validation.

The focus of this experiment is to show the quality of the extracted features and
compare it with other approaches. As can be seen, in all cases the extracted features from
our proposed framework yield a higher F1 score. For example, in Accident Scenario 1,
Literal2Feature achieves 0.46 in comparison to 0.37 for DistMult. The same behavior
can be observed in Accident Scenario 2. Here, Literal2Feature achieves 0.21, however,
the F1 of all other baselines is less than 0.09. In the Carcinogenesis binary classifica-
tion scenario, still, Literal2Feature outperforms other methods. Although in this case,
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Figure 7. Depth Impact on the Classification Result and Number of Extracted Features

FeGeLOD results are comparable, FeGeLOD achieved 0.61 with 247 extracted features,
however, Literal2Feature achieved 0.62 using only 8 extracted features. This reveals that
the features extracted by Literal2Feature are more informative and useful.

As a hypothesis, the further we go deeper in the graph, the more likely to find fea-
tures, but the less trust-worthy and less-relevant the features become. To prove it, we run
the classification scenario on the Engie dataset with 4 classes (Accident Scenario 1) with
MLP algorithm for the features in different depths. As shown in Figure 7, there is no
significant change in F1 after step 3. It indicates that considering the features uptil the
depth of 3 is sufficient and there is no need to consider farther features as it can increase
the running time of the system without apparent gain.

5.1.2. Clustering

To evaluate the usefulness of the extracted features, we additionally designed a clustering
scenario. However, as our datasets have no ground truth for the clustering scenario, we
have used Silhouette Coefficient to measure the quality of the clustering results. The
Silhouette Coefficient is defined for each sample and is composed of two scores: a: The
mean distance between a sample and all other points in the same class. b: The mean
distance between a sample and all other points in the next nearest cluster. The Silhouette
Coefficients for a single sample is then given as:

s =
b−a

max(a,b)
(1)

The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette
Coefficient for each sample, and a higher Silhouette Coefficient score relates to a model
with better defined clusters. We have selected K-Means to demonstrate clustering results
and applied elbow-method to determine the optimal number of clusters, which is set to
4. Table 3 shows the result of the clustering.

As the result depicts, Literal2Feature achieved better clustering for the Engie dataset
and obtained comparable results to RDF2Vec for the Carcinogenesis dataset, whereas
TransE achieved the best clustering score. The reason why TransE achieves good results
in clustering is that TransE is a geometric model and is trained using an objective function
to keep the similar entities close.
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Table 3. Silhouette Coefficient

Engie Carcinogenesis

RDF2Vec 0.004 0.263

TransE 0.113 0.669

SimplE 0.008 0.008

DistMult 0.006 0.009

Literal2Feature 0.133 0.247

Table 4. Synthetic Dataset Description

Dataset #Seeds Size #Triples

DS 1 1 6.5 MB 127 K

DS 2 300 2.2 GB 38 M

DS 3 600 4.5 GB 76 M

DS 4 1200 9.1 GB 153 M

DS 5 2400 13 GB 306 M

DS 6 6000 47 GB 765 M

5.2. Experiment B: Scalability

In this experiment we evaluate the scalability of Literal2Feature by using different data
sizes and varying cluster computing setups. To be able to have different sizes of datasets,
we implemented an RDF data simulator which generates synthetic RDF graph based
on the given depth, branching factor, and number of seeds. Table 4 lists the generated
datasets and their characteristics. The branching factor is set to 50, depth to 3, and all
literals lie at the leaf node to form a complete tree. Worth to mention that the German
DBpedia size is 48GB with 336 M triples, however, as the branching factors of nodes are
not fixed and equal in real datasets, we decided to do the experiments on synthetic data
which requires more CPU and Memory consumption.

5.2.1. Scalability over number of cores

To adjust the distributed processing power, the number of available cores was regulated.
In this experiment, DS 4 is selected as a pilot dataset and the number of cores was in-
creased starting from 22 = 4 up to 27 = 128. The experiments were carried out on a
small cluster of 4 nodes (1 master, 3 workers): AMD Opteron(tm) CPU Processor 6376
@ 2300MHz (64 Cores), 256 GB RAM. Moreover, the machines were connected via
a Gigabit network. All experiments are executed three times and the average value is
reported in the results. Figure 8 shows the scalability over different computing cluster
setups. It is clear that increasing the computational power horizontally, decreases the ex-
ecution time. It should be noted that the runtime does not include the time for data in-
gestion from the Hadoop file system and SPARQL query execution as we used SANSA’s
internal SPARQL engine for SPARQL execution.

In the beginning, by doubling the number of cores, the execution time dramatically
decreases almost with the factor of 2. However, by adding more cores, the execution time
only slightly decreases. This behavior can be seen due to the overhead of shuffling data
between nodes and network latency. The maximum speedup achieved is 6.3x.

5.2.2. Scalability over dataset size

To analyze the scalability over different datasets, we fix the computational power to
64 cores and run the experiments for all datasets introduced in Table 4. By comparing
the runtime as shown in Figure 9, we note that the execution time does not increase
exponentially. Hence, doubling the size of the dataset does not necessarily increase the
execution time with the factor of 2. This behaviour is due to the available resources
(memory) and partition size. On the other hand, as expected, it can be noted that the
random walk consumes much lesser time as compared to full search, which requires
comparatively more resources.

F. Bakhshandegan Moghaddam et al. / Literal2Feature 85



Core
: 4

Core
: 8

Core
: 1

6

Core
: 3

2

Core
: 6

4

Core
: 1

28

0

200

400

600

800
R

un
tim

e
(i

n
se

co
nd

)

Full Search Random Walk

Figure 8. Processing Power Scalability on DS 4
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Figure 9. Sizeup performance evaluation over 64
Cores

6. Conclusion

In this paper, we introduce Literal2Feature, a generic distributed framework for trans-
forming RDF data into a feature matrix, which can be used in many machine learning
algorithms. By providing full control over different hyper-parameters, users will have a
substantial level of flexibility in using the framework. Our experiments also showed that
the framework can be used to analyze RDF data with existing statistical machine learn-
ing pipelines. Moreover, our experiments show that Literal2Feature can be successfully
scaled over a cluster of nodes for large amount of data. In future, we plan to exploit more
features such as graph topological structure, e.g. number of neighbors, type-related fea-
tures, etc.. For multiple features with the same property path, we aim to test the applica-
tion of aggregator functions like average or max, min, as discussed in Section 3.1.5.
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