
Facade-X:
An Opinionated Approach to SPARQL Anything

Enrico Daga1[0000−0002−3184−5407], Luigi Asprino2[0000−0003−1907−0677],
Paul Mulholland1[0000−0001−6598−0757], and Aldo Gangemi3[0000−0001−5568−2684]

1 The Open University (United Kingdom) {enrico.daga,paul.mulholland}@open.ac.uk
2 University of Bologna (Italy) luigi.asprino@unibo.it

3 Consiglio Nazionale delle Ricerche (CNR) aldo.gangemi@cnr.it

Abstract. The Semantic Web research community understood since its
beginning how crucial it is to equip practitioners with methods to trans-
form non-RDF resources into RDF. Proposals focus on either engineering
content transformations or accessing non-RDF resources with SPARQL.
Existing solutions require users to learn specific mapping languages (e.g.
RML), to know how to query and manipulate a variety of source for-
mats (e.g. XPATH, JSON-Path), or to combine multiple languages (e.g.
SPARQL Generate). In this paper, we explore an alternative solution
and contribute a general-purpose meta-model for converting non-RDF
resources into RDF: Facade-X. Our approach can be implemented by
overriding the SERVICE operator and does not require to extend the
SPARQL syntax. We compare our approach with the state of art meth-
ods RML and SPARQL Generate and show how our solution has lower
learning demands and cognitive complexity, and it is cheaper to imple-
ment and maintain, while having comparable extensibility and efficiency.

Keywords: SPARQL · Meta-model · Re-engineering

1 Introduction
Knowledge graphs have nowadays a key role in domains such as enterprise data
integration and cultural heritage. However, domain applications typically deal
with heterogeneous data objects. Therefore, ontology engineers develop knowl-
edge graph construction pipelines that include the transformation of different
types of content into RDF. Typically, this is achieved by using tools that act as
mediators between the data sources and the needed format and data model [12].
Alternatively, dedicated software components implement ad-hoc transformations
from custom formats to a multiplicity of ontologies relevant to the domain [4].
We place our research under the context of the EU H2020 SPICE project, which
aims at developing a linked data infrastructure for integrating and leveraging
museum collections using multiple ontologies covering sophisticated aspects of
citizen engagement initiatives 4. Museum collections come in a variety of data
objects, spanning from public websites to open data sets. These include metadata
4 SPICE Project: https://spice-h2020.eu

Further with Knowledge Graphs. M. Alam et al. (Eds.)
AKA Verlag and IOS Press, 2021

© 2021 Akademische Verlagsgesellschaft AKA GmbH, Berlin
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution License 4.0 (CC BY 4.0).
doi:10.3233/SSW210035

58

summaries as CSVs, record details as JSON files, and binary objects (e.g. artwork
images), among others. The semantic lifting of such a variety of resources can
be a serious bottleneck for the project activities. Several languages have been
developed to either engineer content transformation (e.g. RML) or extending
the SPARQL query language to access non-RDF resources (e.g. SPARQL Gen-
erate). However, existing solutions require Semantic Web practitioners to learn
a mapping language, or even combine multiple languages, for example requiring
to use XPath for XML transformations. In addition, these require Semantic Web
practitioners to know the details of the original format (e.g. XML) as well as the
target domain ontology.

In this paper, we don’t propose a new language. Instead, we aim at reduc-
ing the effort of Semantic Web practitioners in dealing with heterogeneous data
sources by providing a generic, domain-independent meta-model as a facade to
wrap the original resource and to make it query-able as-if it was RDF. Specif-
ically, we contribute a meta-model and associated algorithm for accessing non-
RDF resources as RDF: Facade-X. Our approach can be implemented by overrid-
ing the SERVICE operator and does not require to extend the SPARQL syntax.
We compare our approach with the state of art methods RML and SPARQL
Generate, and show how our solution has lower learning demands and cognitive
complexity, and it is cheaper to implement and maintain, while having compa-
rable extensibility and efficiency (in our naive implementation).

In the next section we analyse the key requirements, building also on the
work of [15]. In Section 3 we describe our approach for adopting facades for
re-engineering resources into RDF and give a formal definition of Facade-X.
Section 4 is dedicated to the prototype implementation of the approach in a
software named SPARQL Anything. Related work is discussed in Section 5. We
compare our approach with state of art methods (RML and SPARQL Generate)
in Section 6, before concluding our paper in Section 7.

2 Requirements

The motivation for researching novel ways to transform non-RDF resources into
RDF comes from the scenarios under development in the EU H2020 project
SPICE: Social Cohesion, Participation, and Inclusion for Cultural Engagement.
In this project, a consortium of eleven partners collaborate in developing novel
ways for engaging with cultural heritage, relying on a linked data network of
resources from museums, social media, and businesses active in the cultural in-
dustry. However, the majority of resources involved are not exposed as Linked
Data but are released, for example, as CSV, XML, JSON files, or combinations
of these formats. In addition, the research activity aims at the design of task-
oriented ontologies, producing multiple semantic viewpoints on the resources and
their metadata. It is clear how the effort required for transforming resources could
constitute a significant cost to the project. In the absence of a strategy to cope
with this diversity, content transformation may result in duplication of effort and
become a serious bottleneck. Table 1 provides a summary of the requirements.
The main requirement is the ability to support users in transforming existing

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything 59

Table 1: Requirements
Requirement Description
Transform Transform several sources having heterogeneous formats
Query Query resources having heterogeneous formats
Binary Support the transformation of binary formats
Embed Support the embedding of content in RDF
Metadata Support the extraction of metadata embedded in files
Low learning demands Minimise the tools and languages that need to be learned
Low complexity Minimise complexity of the queries
Meaningful abstraction Enable focus on data structures rather than implemen-

tation details
Explorability Enable data exploration without premature commitment

to a mapping, in the absence of a domain ontology.
Workflow Integrate with a typical Semantic Web engineering work-

flow
Adaptable Be generic but flexible and adaptable
Sustainable Inform into a software that is easy to implement, main-

tain, and does not have evident efficiency drawbacks
Extendable Support the addition of an open set of formats

non-RDF resources having heterogeneous formats (Transform). In addition, the
solution should be able to support cases in which practitioners only need to inter-
rogate the content (Query). A valid approach should be able to cope with binary
resources as well as textual formats (Binary). In the cultural heritage domain,
metadata files are typically associated to repositories of binary content such as
images in various formats. Applications may need to transfer data and metadata
in a single operation, embedding the binary content in a data value (Embed) and
extracting metadata (Metadata) from the file (from EXIF annotations).

We consider requirements related to usability and adoption. The approach
should ideally limit the number of new languages and tools that need to
be learned in order to transform and use non-RDF resources (Low learning
demands). This can be expected to both encourage adoption and reduce the
learning curve for new users. The code that the user is required to develop in
order to access the resources should be as simple as possible (Low complexity).
The approach should provide the user with a meaningful level of abstraction,
enabling them to focus on the the structure of the data (e.g. data rows and
hierarchies) rather than the details of how the structure has been implemented
(Meaningful abstraction). The approach should support an exploratory way
of working in which the user does not have to prematurely commit to a domain
ontology before they come to understand the data representation that they re-
quire (Explorability). The resulting technology should be easily combined with
typical Semantic Web engineering workflow (Workflow). This requirement, al-
ready mentioned in [15], is interpreted considering that the solution should rely
as much as possible on already existing technologies typically used by our do-
main users. The approach should allow for a technical solution that is generic but

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything60

easily Adaptable to user tasks, for example, supporting symbol manipulation,
variable assignments, and data type manipulation.

Finally, we look into requirements of software engineering. The approach
should be Sustainable and inform a software that is easy to implement on top
of existing Semantic Web technologies, easy to maintain, and does not have effi-
ciency drawbacks compared to alternative state of the art solutions. Ultimately,
the system should be easy to extend (Extendable) to support an open ended
set of formats.

3 An Opinionated Approach
We introduce a novel approach to interrogate non-RDF resources with SPARQL.
Our opinion is that the task of transforming resources into RDF should be de-
coupled in two very different operations: (a) re-engineering, and (b) remodelling.
We define re-engineering as the task of transforming resources minimising do-
main considerations, focusing on the meta-model. Instead, remodelling is the
transformation of domain knowledge, where the original domain model is re-
framed into a new one, whose main objective is to add semantics. From this
perspective, we propose to solve the re-engineering problem automatically and
delegating the remodelling to the RDF-aware user. How to use RDF to access
heterogeneous source formats? We rely on the notion of facade [14] as "an ob-
ject that serves as a front-facing interface masking more complex underlying or
structural code"5. Applied to our problem, a facade acts as a generic meta-model
allowing (a) to inform the development of transformers from an open ended set of
formats, and (b) to generate RDF content in a consistent and predictable way.
In what follows, we describe a generic approach that can be used to develop
facade-based connectors to heterogeneous file formats. After that, we introduce
Facade-X, which is the first of these interfaces, and describe how our facade maps
to RDF. Finally, we design a method to inject facades into SPARQL engines. To
support the reader, we introduce a guide scenario reusing the data of the Tate
Gallery collection, published on GitHub6. The repository contains CSV tables
with metadata of artworks and artists and a set of JSON files with details about
each catalogue record, for example, with the hierarchy of archive subjects. The
file artwork_data.csv includes metadata of the artworks in the collection such
as id, artist, artistId, title, year, medium, and references two external re-
sources: a JSON file with the artwork subjects headings and a link to a JPG
thumbnail image. Our objective is to serve this content to the Semantic Web
practitioners for exploration and reuse.

3.1 Resources, data sources, and facades

In this section we give a formal definition of the three components of our ap-
proach: resources, data sources, and facades. In addition, we describe how an
algorithm can apply these concepts for re-engineering resources in RDF.
5 See also The Facade Design Pattern: https://en.wikipedia.org/wiki/Facade_pattern
(accessed 15/12/2020).

6 Tate Gallery collection metadata: https://github.com/tategallery/collection.

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything 61

We consider a resource anything accessible from a URL and distinguish it
from its content, that we name data source. The file artwork_data.csv7 and
the image N04858_8.jpg are resources and the CSV and JPG content are data
sources. We assume that a resource contains at least one data source8. A data
source can be named with the URL or have a different name9. We introduce the
following predicates and associated axioms, in predicate logic:

1 Resource(r) DataSource(ds) Name(n) includes(r, ds) hasName(ds, n)
2 ∀r.Resource(r)→ ∃ds.includes(r, ds) ∧DataSource(ds)
3 ∀ds.DataSource(ds)→ ∃n.hasName(ds, n) ∧Name(n)
4 ∀ds.DataSource(ds)→ ∃r.Resource(r) ∧ includes(r, ds)
5 ∀ds1∀ds2∀n∀r.
6 includes(r, ds1) ∧ includes(r, ds2) ∧ hasName(ds1, n) ∧ hasName(ds2, n)→ ds1 = ds2
7 ∀ds∀n1∀n2.hasName(ds, n1) ∧ hasName(ds, n2)→ n1 = n2

In addition, we refer to two additional concepts: RDF Graph and RDF Dataset,
as specified by RDF 1.1 [3]. We now describe how an algorithm can apply facades
to resources to derive RDF datasets capable of answering a given query10. Let
Q be the set of all possible queries, G the set of all possible graphs, N the set of
all possible graph names, R the set of all possible resources and DS the set of all
data sources (found in the resources). We define: (i) D as a collection of named
graphs (i.e. D ⊆ N × G); (ii) A (i.e. the algorithm) as a function that given a
resource (r ∈ R), a facade function (f ∈ F), and a query (q ∈ Q), returns a
collection of named graphs including the graphs required to answer the query
(i.e. one of the possible subsets of N × G); (iii) F is a set of functions where
each f ∈ F associates a data source from the resource (ds ∈ DS) and a query
(q ∈ Q) with a graph g ∈ G, according to a facade. A and F can be formally
defined as follows:

A : R× F ×Q → 2N×G F = {f |f : DS ×Q → G}

Additionally, given a query q ∈ Q, a resource r ∈ R and its data sources ds ∈ DS,
we define: (i) g∗ds,q ∈ G as the graph which contains the minimal (optimal) set
of triples required to answer q on ds; (ii) D∗r,q = {(n, g∗ds,q)|includes(r, ds) and
n ∈ N and g∗ds,q ∈ G} as the collection of minimal set of triples required to
answer q on r. It is worth noticing that given a query and a resource neither A
nor any f ∈ F has to return an optimal response (i.e. D∗r,q and g∗ds,q), but they
can return any super set of the optimum (i.e. any g ∈ G such that g∗ds,q ⊆ g).
We don’t make any commitment on the underlying implementation of the facade
with respect to the resource/data sources, apart from assuming that the resulting
dataset will be sufficient, but not necessarily optimal, for answering the query.

7 Available at https://raw.githubusercontent.com/tategallery/collection/master/
artwork_data.csv

8 In principle, a resource may include multiple data sources, for example, an Excel
spreadsheet may include several sheets.

9 Although resources and data sources can be named with the same string (URL), we
consider them different entities in our model.

10 Note that we are not enforcing a specific algorithm, although we implement one in
our experimental evaluation.

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything62

3.2 Facade-X

We base the design of Facade-X on the distinction between containers and values.
Specifically, we define a container as a set of uniquely identifiable slots, each one
of them including either another container or a data value. Slot identifiers (keys)
can be either XSD strings (StringKey) or XSD positive integers (NumberKey).
The predicate Key is a reification of either an integer or a string, while the
predicate V alue reifies a string only. Containers can optionally be qualified by
a type. In Facade-X, data sources are referred to as root containers. We specify
our facade in predicate logic as follows:

1 Root(c0) Container(c1) Slot(s1) Key(n)
2 StringKey(n) NumberKey(n) V alue(v1) Type(t)
3 ∀k.StringKey(k)→ Key(k)
4 ∀k.NumberKey(k)→ Key(k)
5 ¬∃k.NumberKey(k) ∧ StringKey(k)
6 ∀ c.Root(c)→ Container(c)

In addition, we define relations between the model components, including defi-
nitions of domain and range:

1 hasSlot(c, s) hasType(c, t) hasKey(s, k)
2 hasContainer(s, c) hasV alue(s, v)
3 ∀(x, y).hasSlot(x, y)→ Container(x) ∧ Slot(y)
4 ∀(x, y).hasType(x, y)→ Container(x) ∧ Type(y)
5 ∀(x, y).hasKey(x, y)→ Slot(x) ∧Key(y)
6 ∀(x, y).hasContainer(x, y)→ Slot(x) ∧ Container(y)
7 ∀(x, y).hasV alue(x, y)→ Slot(x) ∧ V alue(y)

We define a set of axioms describing additional properties of the meta-model.
Only containers can have a type (but they don’t have to), and there can only be
one root container. A slot can have either one container or one value and cannot
have both. A slot can be member of one container only and slots of a container
are uniquely identified by their key:

1 ∀(x, y).Root(x) ∧ Root(y)→ x = y
2 ¬∃(x, y, z).hasContainer(x, y) ∧ hasV alue(x, z)
3 ∀(x, y, z).hasContainer(x, y) ∧ hasContainer(x, z)→ y = z
4 ∀(x, y, z).hasV alue(x, y) ∧ hasV alue(x, z)→ y = z
5 ∀(x, y, z).hasSlot(x, y) ∧ hasSlot(z, y)→ x = z
6 ∀(c, s1, s2p, n).hasSlot(c, s1) ∧ hasSlot(c, s2) ∧ hasKey(s1, n) ∧ hasKey(s2, n)→ s1 = s2

The data from our guide scenario can be represented as follows:

1 Root(ds)
2 StringKey(id) StringKey(artist) StringKey(artistId) StringKey(title)
3 hasSlot(ds, s1) hasKey(s1, IntegerKey(1)) hasContainer(s1, r1)
4 hasSlot(r1, r1s1) hasKey(r1s1, id) hasV alue(r1s1, ”1035”)
5 hasSlot(r1, r1s2) hasKey(r1s2, artist) hasV alue(r1s2, ”Blake Robert”)
6 hasSlot(r1, r1s3) hasKey(r1s3, artistId) hasV alue(r1s3, ”38”)
7 hasSlot(r1, r1s4) hasKey(r1s4, title) hasV alue(r1s4, ”A Figure Bowing ...”) [...]

Finally, we define mapping rules to RDF, where properties are built using string
keys and resources can be either blank nodes or named IRIs11:

11 The system may allow users to define their own namespace, or reuse the name of
the ds, and leave to the underlying machinery to mint IRIs.

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything 63

1 Root(ds)
f→ Triple(Resource(ds), rdf : type, fx : Root)

2 hasSlot(c, s) ∧ hasKey(s, k) ∧ StringKey(k) ∧ hasContainer(s, c1)

3
f→ Triple(Resource(c), Property(k), Resource(c1))

4 hasSlot(c, s) ∧ hasKey(s, k) ∧ IntegerKey(k) ∧ hasContainer(s, c1)

5
f→ Triple(Resource(c), ContainerMembershipProperty(k), Resource(c1))

6 hasSlot(c, s) ∧ hasKey(s, k) ∧ StringKey(k) ∧ hasV alue(s, v)

7
f→ Triple(Resource(c), Property(k), Literal(v))

8 hasSlot(c, s) ∧ hasKey(s, k) ∧ IntegerKey(k) ∧ hasV alue(s, v)

9
f→ Triple(Resource(c), ContainerMembershipProperty(k), Literal(v))

10 hasType(c, t)
f→ Triple(Resource(c), rdf : type, Resource(t))

Our model maps into an RDF that mixes lists, type statements, and key-value
pairs. Recent work suggests good practices for developing lists in RDF that are
efficient to query [5, 6], favouring container membership properties over nested
structures to represent lists. We define two namespaces, one for the primitive
entity Root and another for minting properties from keys12. The Facade-X RDF
vocabulary is published at http://sparql.xyz/facade-x/ns/. The above mappings
produce the following Facade-X RDF, from our example scenario:

1 @prefix fx: <http :// sparql.xyz/facade -x/ns/>.
2 @prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>.
3 @base <http :// sparql.xyz/facade -x/data/>.
4 [] a fx:Root ;
5 rdf:_1 [:id "1034"; :artist "Blake Robert"; :artistId "38"; ...
6 rdf:_2 [:id "16216"; :artist "Williams Terrick" :artistId "2149"; ...
7 rdf:_3 [:id "12086"; :artist "Pissarro Lucien" :artistId "1777"; ...
8 ...

3.3 Using facades in SPARQL

The algorithm in Section 3.1 requires as input a URL and returns an RDF dataset
as output. We propose to overload the SPARQL SERVICE operator by defin-
ing a custom URI-schema, based on the protocol x-sparql-anything:, which
is intended to behave as a virtual remote endpoint. The related URI-schema
supports an open-ended set of parameters specified by the facade implementa-
tions available. Options are embedded as key-value pairs, separated by comma.
Implementations are expected to either guess the source type from the resource
locator or to obtain an indication of the type from the URI schema, for example,
with an option "mime-type":
x−sparq l−anything :mime−type=app l i c a t i o n / j son ; cha r s e t=UTF−8, l o c a t i on=. . .

Following our example scenario, users can write a query and select metadata
from the CSV file, as well as embed the content of remote JPG thumbnails in
the RDF. Multiple SERVICE clauses may integrate data from more files, for
example, the JSON with details about artwork subjects. We leave the content
of the CONSTRUCT section to be filled by the ontology engineer:

12 Not all strings are valid IRI local names. Implementations will need to apply heuris-
tics to cope with corner cases in CSV or JSON keys.

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything64

1 PREFIX fx: <http :// sparql.xyz/facade -x/ns/>
2 PREFIX xyz: <http :// sparql.xyz/facade -x/data/>
3 PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>
4 CONSTRUCT {
5 [...] # Amazing ontology here
6 } WHERE {
7 BIND (IRI(CONCAT(STR(tate:), "artwork -", ?id)) AS ?artwork) .
8 BIND (IRI(CONCAT(STR(tate:), "artist -", ?artistId)) AS ?artist) .
9 SERVICE <x-sparql -anything:csv.headers=true ,location=file :./

artwork_data.csv > {
10 [] xyz:id ?id ; xyz:artist ?artistLabel ;
11 xyz:accessionId ?accId ; xyz:artistId ?artistId ;
12 xyz:title ?title; xyz:medium ?medium ;
13 xyz:year ?year ; xyz:thumbnailUrl ?thumbnail .
14 }
15 # JPEG Thumbnail from the Web
16 BIND (IRI(CONCAT("x-sparql -anything:location=", ?thumbnail)) AS ?

embedJPG).
17 SERVICE ?embedJPG { [] rdf:_1 ?imageInBase64 }.
18 # JSON File with subjects
19 BIND (IRI(CONCAT("x-sparql -anything:file :./ artworks/", ?accId)) AS ?

subJSON).
20 SERVICE ?subJSON { [xyz:id ?subjectId ; xyz:name ?subjectName] }.
21 }

4 Implementation to SPARQL Anything

In this section we describe SPARQL Anything which is meant to provide a
proof-of-concept of our approach. SPARQL Anything implements a stack of
transformers mapped to media types and file extensions. The framework al-
lows the addition of an open-ended set of transformers as Java classes. Dur-
ing execution, a query manager intercepts usage of the SERVICE operator
and in case the endpoint URI has the x-sparql-anything protocol, it parses
the URI extracting the resource locator and parameters. Default parameters
are: mime-type, locator, namespace (to be used when defining RDF re-
sources), and root (to use as the IRI of the root RDF resource, instead of a
blank node), and metadata. SPARQL Anything will project an RDF dataset
during query execution including the data content and optionally a graph
named http://sparql.xyz/facade-x/data/metadata, including file metadata
extracted from image files (also in Facade-X). Specific formats may support spe-
cific parameters. For example, the Text triplifier supports a regular expression
to be used by a tokenizer that splits the content in a list of strings (defaults to
the space character). Similarly, the CSV triplifier allows to specify whether to
use the first row as headers or only use column indexes. More information on
the currently supported formats can be found in the project page13.

We validated the generality of Facade-X as a meta-model with relation to the
triplifiers currently implemented in SPARQL Anything. We already considered
CSV in the guide example. The following JSON example, also derived from the
Tate Gallery open data, can be mapped to our model as in the associated listing.

1 { "fc": "Kazimir Malevich",
2 "id": 1561,

13 http://github.org/sparql-anything/sparql-anything.

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything 65

3 "places": [
4 { "name": "Ukrayina", "type": "nation" },
5 { "name": "Moskva , Rossiya", "type": "inhabited_place" }
6]}
7
8 Root(malevic)
9 StringKey(fc)StringKey(id)StringKey(places)StringKey(name)StringKey(type)

10 NumberKey(1)NumberKey(2)
11 hasSlot(malevic, sfc) ∧ hasKey(sfc, fc) ∧ hasV alue(sfc, ”KazimirMalevich”)
12 hasSlot(malevic, sid) ∧ hasKey(sid, id) ∧ hasV alue(sid, 1561)
13 hasSlot(malevic, splaces) ∧ hasKey(splaces, places) ∧ hasContainer(splaces, cplaces)
14 hasSlot(cplaces, splace/1) ∧ hasKey(splace/1, 1) ∧ hasContainer(splace/1, ukraina)
15 hasSlot(ukraina, sukr/name) ∧ hasKey(sukr/name, name)∧
16 hasV alue(sukr/name, ”Ukrayina”)
17 hasSlot(ukraina, sukr/type) ∧ hasKey(sukr/type, type) ∧ hasV alue(sukr/type, ”nation”)
18 hasSlot(cplaces, splace/2) ∧ hasKey(splace/2, 2) ∧ hasContainer(splace/2,moskva)
19 hasSlot(moskva, smos/name) ∧ hasKey(smos/name, name)∧
20 hasV alue(smos/name, ”Moskva,Rossiya”)
21 hasSlot(moskva, smos/type) ∧ hasKey(smos/type, type)∧
22 hasV alue(smos/type, ”inhabited_place”)

Finally, we show how an excerpt from a catalogue record in XML, can be
interpreted with our Facade-X (this also applies to HTML):
1 <OGT hint="OGGETTO">
2 <OGTD hint="Definizione">reperti antropologici ...</ OGTD >
3 <OGTT hint="Tipologia">reperto osteo -dentario </OGTT >
4 ...
5
6 Root(ogt) ∧ hasType(record, ”OGT”)
7 Container(ogtd) ∧ hasType(ogtd, ”OGTD”)
8 Container(ogtt) ∧ hasType(ogtt, ”OGTT”)
9 StringKey(hint)

10 NumberKey(1)NumberKey(2)
11 hasSlot(ogt, s1) ∧ hasKey(s1, 1) ∧ hasV alue(s1, ogtd)
12 hasSlot(ogt, s2) ∧ hasKey(s2, 2) ∧ hasV alue(s2, ogtt)
13 hasSlot(ogt, shint) ∧ hasKey(shint, hint) ∧ hasV alue(shint, ”OGGETTO”)
14 ...

5 Related Work

Related work includes semantic web approaches to content re-engineering, ap-
proaches to extending the functionalities of SPARQL, and research on end-user
development and human interaction with data.

In ontology engineering, non-ontological resource re-engineering refers to the
process of taking an existing resource and transforming it into an ontology [21].
These family of approaches integrate resource transformation within the method-
ology, where domain knowledge plays a central role. Triplify [2] is one of the first
tools aiming at converting sources into RDF in a domain independent way. The
approach is based on mapping HTTP URIs to ad-hoc database queries, and
rewriting the output of the SQL query into RDF. Other tools are based on the
W3C Direct Mapping recommendation [20] for relational databases. Systems
are available for automatically transforming data sources of several formats into
RDF (Any2314, JSON2RDF15, CSV2RDF16 to name a few). A recent survey
14 http://any23.apache.org/
15 https://github.com/AtomGraph/JSON2RDF
16 http://clarkparsia.github.io/csv2rdf/

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything66

lists systems to lift tabular data [9]. While these tools have a similar goal (i.e.
enabling the user to access the content of a data source as if it was in RDF),
the (meta)model used for generating the RDF data highly depends on the input
format. All these approaches are not interested in the requirement of providing
a common useful abstraction to heterogeneous formats. A long history of map-
ping languages for transforming heterogeneous files into RDF can be considered
superseded by RML [8], including a number of approaches for ETL-based trans-
formations [1]. We consider RML as representative of general data integration
approaches such as OBDA [24]. This family of solutions are based on a set of
declarative mappings. The mapping languages incorporate format-specific query
languages (e.g. SQL or XPath) and require the practitioner to have deep knowl-
edge not only of the input data model but also of standard methods used for
its processing. Recent work acknowledges how these languages are built with
machine-processability in mind [13] and how defining or even understanding the
rules is not trivial to users.

We survey approaches to extend SPARQL. A standard method for extend-
ing SPARQL is by providing custom functions17, or by using so-called magic
properties. This approach defines custom predicates to be used for instruct-
ing specific behaviour at query execution. SPARQL-Generate [15] introduces a
novel approach for performing data transformation from heterogeneous sources
into RDF by extending the SPARQL syntax with new operators [15]: GENER-
ATE, SOURCE, and ITERATOR. Custom functions perform ad-hoc operations
on the supported formats, for example, relying on XPath or JSONPath. Other
approaches extend SPARQL without changes to the standard syntax. BASIL [7]
allows to define parametric queries by enforcing a convention in SPARQL vari-
able names. As a result, SPARQL query templates can be processed with stan-
dard query parsers. grlc decorates the query with execution metadata declared
in comments [17]. SPARQL Micro-service [18] provides a framework that, on the
basis of API mapping specification, wraps web APIs in SPARQL endpoints and
uses JSON-LD profile to translate the JSON responses of the API into RDF.
In this paper, we follow a similar, minimalist approach and extend SPARQL by
overriding the behaviour of the SERVICE operator. We compare our proposal
with SPARQL Generate and RML in detail in the evaluation section.

The proposed approach relates to research on end-user development and hu-
man interaction with data. End-user development is defined by [16] as "meth-
ods, techniques, and tools that allow users of software systems, who are acting as
non-professional software developers, at some point to create, modify or extend a
software artefact". Many SPARQL users fall into the category of end-user devel-
oper. In a survey of SPARQL users, [22] found that although 58% came from the
computer science and IT domain, other SPARQL users came from non-IT areas,
including social sciences and the humanities. Findings in this area [19] suggest

17 ARQ provides a library of custom functions for supporting aggregates
such as computing a standard deviation of a collection of values. ARQ
functions: https://jena.apache.org/documentation/query/extension.html (accessed
15/12/2020).

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything 67

that the data with which users work is more often primarily list-based and/or
hierarchical rather than tabular. For example, [11] proposes an alternative for-
mulation to spreadsheets in which data is represented as list-of-lists, rather than
tables. Our proposal goes in this direction and accounts for recent findings in
end-user development research.

6 Evaluation

We conduct a comparative evaluation of SPARQL Anything with respect to
the state of art methods RML and SPARQL Generate. First, we analyse in a
quantitative way the cognitive complexity of the frameworks. Second, we conduct
a performance analysis of the reference implementations. Finally, we discuss the
approaches in relation to the requirements elicited in Section 2. Competency
questions, queries, experimental data, and code used for the experiment are
available on the GitHub repository of the SPARQL Anything project18.

Cognitive Complexity Comparison. We present a quantitative analysis on
the cognitive complexity of SPARQL Anything, SPARQL Generate and RML
frameworks. One effective measure of complexity is the number of distinct items
or variables that need to be combined within a query or expression [10]. Such
a measure of complexity has previously been used to explain difficulties in the
comprehensibility of Description Logic statements [23]. Specifically, we counted
the number of tokens needed for expressing a set of competency questions. We
selected four JSON files from the case studies of the SPICE project where each
file contains the metadata of artworks of a collection. Each file is organised as
a JSON array containing a list of JSON objects (one for each artwork). This
simple data structure avoids favouring one approach over the others. Then, an
analysis of the schema of the selected resources allowed us to define a set of
12 competency questions (CQs) that were then specified as SPARQL queries
or mapping rules according to the language of each framework, in particular:
(i) 8 CQs (named q1-q8), aimed at retrieving data from the sources, were spec-
ified as SELECT queries (according to SPARQL Anything and SPARQL Gen-
erate); (ii) 4 CQs (named q9-q11), meant for transforming the source data to
RDF, were expressed as CONSTRUCT queries (according to SPARQL Any-
thing and SPARQL Generate) or as mapping rules complying with RML. These
queries/rules intend to generate a blank node for each artwork and to attach
the artwork’s metadata as dataproperties of the node. Finally, we tokenized the
queries (by using "(){},;\n\t\r␣ as token delimiters) and we computed the total
number of tokens and the number of distinct tokens needed for each queries. By
observing the average number of tokens per query we can conclude that RML is
very verbose (109.75 tokens) with respect to SPARQL Anything (26.25 tokens)
and SPARQL Generate (30.75 tokens) whose verbosity is similar (they differ of
the ∼6.5%). However, the average number of distinct tokens per query shows
that SPARQL Anything requires less cognitive load than other frameworks. In
18 https://github.com/spice-h2020/SPARQL Anything/tree/main/experiment

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything68

(a) Execution time per query. (b) Execution time with increasing input size.

Fig. 1: Analysis of the the execution time.

Table 2: Formats supported by RML, SPARQL Generate, and SPARQL Any-
thing.

JSON CSV HTML Bin. XML RDB Text Embed Meta. Spread.
RML

SPARQL-Generate
SPARQL Anything

fact, while SPARQL Anything required 18.25 distinct tokens, SPARQL Gener-
ate needed 25.5 distinct tokens (∼39.72% more) and RML 45.25 distinct tokens
(∼150% more).

Performance Comparison. We assessed the performance of three frameworks
in generating RDF data. All of the tests described below were run three times
and the average time among the three executions is reported. The tests were
executed on a MacBook Pro 2020 (CPU: i7 2.3 GHz, RAM: 32GB). Figure 1a
shows the time needed for evaluating the SELECT queries q1-q8 and for gen-
erating the RDF triples according to the CONSTRUCT queries/mapping rules
q9-q12. The three frameworks have comparable performance. We also measured
the performance in transforming input of increasing size. To do so, we repeat-
edly concatenated the data sources in order to obtain a JSON array containing
1M JSON objects and we cut this array at length 10, 100, 1K, 10K and 100K.
We ran the query/mapping q12 on these files and we measured the execution
time shown in Figure 1b. We observe that for inputs with size smaller than
100K the three frameworks have equivalent performance. With larger inputs,
SPARQL Anything is slightly slower than the others. The reason is that, in our
naive implementation, the data source is completely transformed and loaded
into a RDF dataset in-memory, before the query is evaluated. However, imple-
mentations could stream the triples during query execution, or transform the
optimal triple set for the query solution, thus achieving better performance on
large input. However, we leave this optimisations to future work.

Requirements satisfaction and discussion We discuss the requirements
introduced in Section 2.

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything 69

Transform, Binary, Embed, and Metadata. All the frameworks support users
in transforming heterogeneous formats with few differences (a comparison is pro-
vided in Table 2). Currently, SPARQL Anything and SPARQL-Generate cover
the largest set of input formats. SPARQL-Generate however does not support
embedding content (Embed) and extracting metadata from files (Metadata). Both
features are not supported by RML, which doesn’t support plain text as well.
SPARQL Anything allows users to query spreadsheets, but it is not able to han-
dle relational databases yet19. SPARQL Anything is the only tool supporting
the extraction of metadata and the embedding of binary content.

Query. In terms of query support, while RML requires data to be trans-
formed first and then uploaded to a SPARQL triple store, SPARQL Anything
and SPARQL-Generate enable users to query resources directly.

Low learning demands. SPARQL Generate uses an extension to SPARQL
1.1 to transform source formats into RDF. RML provides an extension to the
R2RML vocabulary in order to map source formats into RDF. Therefore either
a SPARQL extension or a new mapping language has to be learned to perform
the translation. In the case of Facade-X, no new language has to be learned as
data can be queried using existing SPARQL 1.1 constructs.

Low complexity. Complexity can be measured as the number of distinct
items or variables that need to be combined with the query. In experiments,
Facade-X is found to perform favourably in comparison to SPARQL Generate
and RML.

Meaningful abstraction. Differently from RML and SPARQL-Generate,
which require users to be knowledgeable of the source formats and their query
languages (e.g. XPath, JSONPath etc.), Facade-X users can access a resource
as if it was an RDF dataset, hence the complexity of the non-RDF languages is
completely hidden to them. The cost for this solution is limited to the users which
are required to explore the facade that is generated and tweak the configuration
via the Facade-X IRI schema.

Explorability. With SPARQL Generate and RML, the user needs to com-
mit to a particular mapping or transformation of the source data into RDF.
However, the data representation required to carry out a knowledge intensive
task often emerges from working with data and cannot be wholly specified in
advance (this is a crucial requirement of our project SPICE). By distinguishing
the processes of re-engineering and re-modelling, Facade-X enables the user to
avoid prematurely committing to a mapping and rather focus on querying the
data within SPARQL, in a domain-independent way.

Workflow. All the technologies considered can in principle be integrated with
a typical Semantic Web engineering workflow. However, while we cannot assume
that Semantic Web experts have knowledge of RML, XPath, and SPARQL Gen-
erate, we can definitely expect knowledge of SPARQL.

Adaptable. All technologies provide a flexible set of methods for data manip-
ulation, sparql.aything relying on plain SPARQL. We make the assumption that

19 However, relational tables can be mapped using an approach similar to CSV and
spreadsheets tables. A dedicated component is currently being developed.

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything70

SPARQL itself is enough for manipulating variables, content types, and RDF
structures. It is an interesting, open research question to investigate content ma-
nipulation patterns in the various languages and compare their ability to meet
user requirements.

Extendable and Sustainable. Our approach can be implemented within
existing SPARQL query processors with minimal development effort. Extending
SPARQL Anything requires to write a component that exposes a data source
format as Facade-X. Facade-X does not need to be encoded in the software but
serves as a reference for mapping an open ended set of formats. In contrast,
extending SPARQL Generate and RML requires extending the user toolkit to
handle the specificity of the formats, exposing to users new functions for query-
ing, filtering, traversing, and so on. In addition, our approach leads to a more
sustainable codebase. To give evidence of this statement, we use the tool cloc20 to
count the lines of Java code required to implement the core module of SPARQL
Generate in Apache Jena (without considering format-specific extensions21) and
the RML implementation in Java22. SPARQL Generate and RML require de-
veloping and maintaining 12280 and 7951 lines of Java code, respectively. We
developed the prototype implementation of SPARQL Anything with 3842 lines
of Java code, including all the currently supported transformers.

7 Conclusions

In this paper, we presented an opinionated approach for making non-RDF re-
sources query-able with SPARQL. We contributed a general approach to ap-
ply facades to content re-engineering and a specific instance of this approach,
Facade-X, which defines a general meta-model akin to a list-of-lists. We com-
pared our approach with the state of art methods RML and SPARQL Generate
and demonstrated how our solution has lower learning demands and cognitive
complexity, and it is cheaper to implement and maintain, while having compara-
ble extensibility. Next, we will extend the range of supported formats of SPARQL
Anything, including relational databases, Microsoft Office files, and binary con-
tent other then images. The approach does not enforce a specific algorithm and
leaves open the opportunity of developing alternative strategies for performance
optimisation, considering the specificity of the resources, the complexity of the
queries, and the computational resources available. Moreover, we will perform
a user study for investigating the cognitive implications of using Facade-X as a
meta-model with respect to arbitrary RDF, and compare the tools in terms of
expressivity and ability to meet user requirements. Finally, other facades can be
designed as well. It is an interesting research question to investigate content ma-
nipulation patterns in alternative facades and evaluate their benefit for content
exploration and transformation.
20 cloc: https://github.com/AlDanial/cloc (accessed 15/12/2020).
21 For SPARQL Generate, we only considered the code included in the submodule
sparql-generate-jena.

22 RMLMapper: https://github.com/RMLio/rmlmapper-java.

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything 71

Acknowledgements The research has received funding from the European
Union’s Horizon 2020 research and innovation programme through the project
SPICE - Social Cohesion, Participation, and Inclusion through Cultural Engage-
ment (Grant Agreement N. 870811), https://spice-h2020.eu, and the project Po-
lifonia: a digital harmoniser of musical cultural heritage (Grant Agreement N.
101004746), https://polifonia-project.eu.

References

1. Arenas-Guerrero, J., Scrocca, M., Iglesias-Molina, A., Toledo, J., Pozo-Gilo, L.,
Dona, D., Corcho, O., Chaves-Fraga, D.: Knowledge graph construction: An etl
system-based overview. ESWC 2021 Workshop KGCW (Submission) (2021)

2. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: light-
weight linked data publication from relational databases. In: Proceedings of the
18th international conference on World wide web. pp. 621–630 (2009)

3. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract syntax.
W3C recommendation, W3C (Feb 2014), https://www.w3.org/TR/2014/REC-
rdf11-concepts-20140225/

4. Daga, E., d’Aquin, M., Adamou, A., Brown, S.: The open university linked data–
data. open. ac. uk. Semantic Web 7(2), 183–191 (2016)

5. Daga, E., Meroño-Peñuela, A., Motta, E.: Modelling and querying lists in RDF. A
pragmatic study. In: Proceedings of the QuWeDa 2019: 3rd Workshop on Querying
and Benchmarking the Web of Data co-located with 18th International Seman-
tic Web Conference (ISWC 2019), Auckland, New Zealand, October 26-30, 2019.
CEUR-WS.org (2019)

6. Daga, E., Meroño-Peñuela, A., Motta, E.: Sequential linked data: the state of
affairs. Semantic Web (2021)

7. Daga, E., Panziera, L., Pedrinaci, C.: A basilar approach for building web apis on
top of sparql endpoints. In: CEUR Workshop Proceedings. vol. 1359, pp. 22–32
(2015)

8. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: Rml: a generic language for integrated rdf mappings of heterogeneous
data. In: 7th Workshop on Linked Data on the Web (2014)

9. Fiorelli, M., Stellato, A.: Lifting tabular data to rdf: A survey. Metadata and
Semantic Research 1355, 85 (2021)

10. Halford, G.S., Andrews, G.: : The development of deductive reasoning: How im-
portant is complexity? Thinking & Reasoning 10(2), 123–145 (2004)

11. Hall, A.G.: The Lish: A Data Model for Grid Free Spreadsheets. Ph.D. thesis, The
Open University (2019)

12. Haslhofer, B., Isaac, A.: data. europeana. eu: The europeana linked open data
pilot. In: International Conference on Dublin Core and Metadata Applications.
pp. 94–104 (2011)

13. Heyvaert, P., De Meester, B., Dimou, A., Verborgh, R.: Declarative rules for linked
data generation at your fingertips! In: European Semantic Web Conference. pp.
213–217. Springer (2018)

14. Johnson, R., Vlissides, J.: Design patterns. Elements of Reusable Object-Oriented
Software Addison-Wesley, Reading (1995)

15. Lefrançois, M., Zimmermann, A., Bakerally, N.: A sparql extension for generating
rdf from heterogeneous formats. In: European Semantic Web Conference. pp. 35–
50. Springer (2017)

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything72

16. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-user development: An emerg-
ing paradigm. In: End user development, pp. 1–8. Springer (2006)

17. Meroño-Peñuela, A., Hoekstra, R.: grlc makes github taste like linked data apis.
In: European Semantic Web Conference. pp. 342–353. Springer (2016)

18. Michel, F., Faron-Zucker, C., Corby, O., Gandon, F.: Enabling automatic discovery
and querying of web apis at web scale using linked data standards. In: Companion
Proceedings of The 2019 World Wide Web Conference. pp. 883–892 (2019)

19. Panko, R.R., Aurigemma, S.: Revising the panko–halverson taxonomy of spread-
sheet errors. Decision Support Systems 49(2), 235–244 (2010)

20. Prud’hommeaux, E., Arenas, M., Bertails, A., Sequeda, J.: A direct map-
ping of relational data to RDF. W3C recommendation, W3C (Sep 2012),
https://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/

21. Villazón-Terrazas, B.C., Suárez-Figueroa, M., Gómez-Pérez, A.: A pattern-based
method for re-engineering non-ontological resources into ontologies. International
Journal on Semantic Web and Information Systems (IJSWIS) 6(4), 27–63 (2010)

22. Warren, P., Mulholland, P.: Using sparql–the practitioners’ viewpoint. In: Euro-
pean Knowledge Acquisition Workshop. pp. 485–500. Springer (2018)

23. Warren, P., Mulholland, P., Collins, T., Motta, E.: Making sense of description
logics. In: Proceedings of the 11th International Conference on Semantic Systems.
pp. 49–56 (2015)

24. Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., Za-
kharyaschev, M.: Ontology-based data access: A survey. International Joint Con-
ferences on Artificial Intelligence (2018)

E. Daga et al. / Facade-X: An Opinionated Approach to SPARQL Anything 73

