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Abstract. Matching tables against Knowledge Graphs is a crucial task
in many applications. A widely adopted solution to improve the precision
of matching algorithms is to refine the set of candidate entities by their
type in the Knowledge Graph. However, it is not rare that a type is
missing for a given entity. In this paper, we propose a methodology
to improve the refinement phase of matching algorithms based on type
prediction and soft constraints. We apply our methodology to state-of-
the-art algorithms, showing a performance boost on different datasets.
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1. Introduction

Linking values occurring in a table to entities in a Knowledge Graph (KQG) is
a critical task for Semantic Table Interpretation (STI). The task is crucial for
several downstream applications, including the transformation of tabular data
into a KG, question answering over web tables, and KG completion, and it has
collected a lot of attention in last years [1,2]. In STI, entity linking is referred
to as Cell Entity Annotation (CEA), where other tasks are performed at the
same time to annotate columns with entity types (CTA) and properties (CPA) in
order to interpret the table schema into the graph-based model of the reference
KG. The CEA, CTA, and CPA tasks are interlinked and can mutually inform
each other; for example, entity-level annotations can suggest or provide evidence
for type and property-level annotations, while type-level annotations may help
disambiguation for entity-level annotations. Approaches addressing all the STI
tasks usually implement complex pipelines to collect and propagate the evidence
across tasks. A CEA algorithm is expected to disambiguate the textual values
in a cell, referred to as labels from now on, after retrieving a set of candidate
entities from the KG. As a result, the algorithm can decide whether to establish
a link for the label, i.e., to annotate the cell with an entity from the KG, or
leave it not linked. Different benchmarks have shown that algorithms perform

1Corresponding Author. E-mail: vincenzo.cutrona@unimib.it
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linking effectively when tables are small and labels are characterized by no or
low ambiguity. However, the performance drops dramatically as soon as labels
are ambiguous and the tables dimension increases, thus novel datasets have been
developed with the objective of challenging algorithms to properly deal with both
ambiguity and large tables [2,3]. Algorithms must tackle these challenges and
improve their performance in settings covering relevant application scenarios.

In this paper we focus on how the entity type information can be better
exploited to support CEA pipelines. Indeed, entity type plays a key role in CEA,
with column-wise coherence of the entity types being a characterizing feature
of table semantics; however, type information explicitly stored in KGs is known
to be imperfect and incomplete [4], but this aspect is often overlooked by CEA
algorithms, which assume KGs to be complete [5].

We found two patterns used by CEA algorithms available in the literature
that can be improved by better handling entity types: (i) Filtering by type, where
types associated to a column are used as hard constraints to filter out candidate
entities having different types; (ii) Ranking by distributed entity representations
stmilarity, where distributed representations of entities (i.e., entity embeddings)
are used to compute the similarity between candidates for different labels in order
to support the disambiguation. These patterns are, for example, core mechanisms
used by a state-of-the-art algorithms such as FactBase, EmbeddingsOnGraph, and
their hybrid combinations [6], T2K [7], TableMiner+ [8], but also in more recent
approaches tailored on STI challenge data [5,9,10].

We propose to use neural models for type prediction and type representation
to improve the above-mentioned mechanisms, by enriching the type information
used in existing pipelines in a modular fashion. A first approach, Type enrich-
ment for filtering by type, enriches the types of candidate entities with types pre-
dicted by a neural network. A second approach, Type enrichment for ranking by
distributed entity representations similarity, extends entity embedding with dis-
tributed representations of types, making similarity more aware of entity types.
The two approaches can be combined and we propose to enrich entity embeddings
with the type predicted by a neural model. Both approaches capture a similar
principle in orthogonal ways, that is, to implement soft type-based constraints
to improve entity disambiguation, from which the name NEST was given to the
proposed methodology, as further explained in Section 4. As for type prediction,
we test two different models using respectively textual descriptions and entity
embeddings trained over the KG as input for the prediction.

To test our methodology we conduct experiments on datasets that have been
used in previous work, or have been published to make disambiguation more
challenging. In our experimental settings, we apply the methodology to a selected
pool of state-of-the-art algorithms [6] that we chose because of their performance
and because they are more prone to handle large tables, general enough to be
applied to different settings and not based on specific assumptions tailored to a
specific challenge. However, our novel methodology potentially applies to almost
every algorithm that uses a filtering or ranking strategy based on the entity
typing. Results suggest that the soft constraint principle significantly improves
approaches based on similarity computed using entity embeddings and improves
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approaches based on filtering by type when the types of the correct entities are
not completely coherent (by the construction of the dataset).

The rest of the paper is organized as follows: Section 3 describes the need
for soft type-based constraints for entity disambiguation also introducing the key
terminology. Section 4 describes NEST, the two type enrichment strategies and
two neural models for type prediction. In Section 5 we evaluate NEST while in
Section 2 we discuss related work. In Section 6 we report conclusive remarks.

2. Related Work

The growing interest of the Semantic Web community is witnessed by the cre-
ation in 2019 of the SemTab challenge [1], aimed at standardizing the evalua-
tion of table annotation algorithms. Among the participant systems, we mention
MTab [5], which applied a majority voting strategy to select the best candidate
in a pool, Tabularisi [11], which created a feature space from the lookup service
results using TF-IDF, and DAGOBAH [9], which is based on entity embeddings
and K-means clustering. However, these systems are tailored to the challenge
specifications, lacking generality. Indeed, the performance of these approaches are
computed without considering the knowledge gap because the list of cells to an-
notate is given as input within SemTab, disregarding the decision making phase.
Moreover, algorithms like MTab relied on a brute force strategy which raises the
computational cost, hindering its adoption in real-world scenarios. We remark
that FactBase and EmbeddingsOnGraph do not have these shortcomings.

Other unsupervised entity matching approaches adopt an iterative method
that combines schema and entity matching. T2K [7] brought outstanding im-
provements in the state-of-the-art and inspired different systems [8,10]. The dis-
ambiguation component in the aforementioned approaches is dependant on the
type-based constraints, which are assumed as hard constraints. None of the ex-
isting approaches explicitly addresses the problem of relaxing hard constraints,
highlighting the novelty of NEST. Moreover, to the best of our knowledge, NEST
is the first methodology that focuses on improving the use of types for entity
disambiguation using neural models to predict the type of candidate entities. Col-
Net [12] is a supervised system based on convolutional neural networks to predict
column types and it is limited to predicting only 17 types.

The work in [13] used a graphical model and a collective classification tech-
nique to optimize a global coherence score for a set of entities in a table. The
approach requires collecting tables to train the underlying model. Similarly to
our work, the authors tried to remove hard type constraints from the matching
process, but they did not exploit the type assertion axioms in the KG, prefer-
ring to encode the type into features based on entity co-occurrence statistics. A
very recent work demonstrated how language models can be exploited to solve
many table understanding tasks [14]. Nonetheless, the authors did not exploit the
information contained in the KG and required the use tables during pre-training.
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Figure 1. A table containing data about philosophers of science (1900-1930) from Wikipedia,
and a subgraph of the DBpedia KG. Dark nodes are types from the DBpedia Ontology and
dashed lines represent subsumption axioms.

Dewey

3. Entity Linking in Tables and Entity Types

The CEA task is defined as in Section 1.

Most algorithms exploit context information to support the disambiguation,
looking at values occurring on the same column or row of the cell to annotate. The
cell 7, j refers to cell in the ith row and jth column, respectively indicated also
as R; and C;. In STI it is assumed that some columns contain entity mentions
while others do not. Some approaches and datasets even use a stronger one-entity-
per-row assumption, i.e., that only one column contains cells to annotate, which
means that each row describes only one entity [7], but this assumption is not
realistic in several application scenarios and is discarded in recent datasets [1].
When we are trying to annotate a cell 4, j we refer to the column C; as to the
entity column and to all other columns as context columns, we refer to its label
as to label; ; (while for sake of clarity we will use value to refer to the content of
cells in the context columns).

We assume that the reader is familiar with KGs, for which we only introduce
the terminology used in this paper. A KG describes entities with a set of (entity-
related) facts that we express in a simple predicate logic notation. If e is an entity
identifier, P(e,v) or P(v,e) are facts relating e to v with a property P, which
represents a relation; for P(e,v), v can be an entity identifier, a type identifier
(or class identifier) or any literal. The set of direct types of an entity is defined by
facts stored in the KG. An entity can have zero, one or more direct types. Types
are connected by a subclass relation, which supports type inheritance.

To discuss the role that types play in CEA, we use the example depicted
in Figure 1. First, we remark the ambiguity of the labels: e.g., if we search for
Dewey in DBpedia we retrieve two persons, John Dewey, the philosopher, and
a librarian, plus several other entities of different types. Einstein also returns
entities of different types.

Second, we can expect type-wise coherence in each column, in this case,
philosophers, but we cannot expect that the classification of the table perfectly
matches the classification in the KG (in some cases the list of direct types may
be simply incomplete). The DBpedia entity Albert Einstein is assigned only
with the type Scientist, even if his thoughts have been appreciated also from
a philosophical point of view.” Filtering out candidates by using the column

Zhttps: //en.wikipedia.org/wiki/List_of_philosophers_of_science
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type Philosopher as a hard constraint will lead to discard the entity Albert
Einstein. Some algorithms resort to use a more generic type, which is superclass
of the types associated with all or some entities (in this case, it would be Person),
but as a drawback, they have to deal with a much larger set of candidates; for
example, 34 entities of type Person in DBpedia contains the term “Einstein” in
their label, 2 of which are of type Scientist.

CEA algorithms usually combine three main operations into complex
pipelines:

1. Candidates retrieval, where some value in the table, usually the label of
the cell to annotate, is matched against the facts of the KG; this operation
returns a - possibly empty - set of candidate entities.

2. Ranking, where candidate entities are ranked according to some criterion,
which may combine matching scores (e.g., retrieval function), other scores,
filters, and more sophisticated mechanisms.

3. Decision making, where the collected evidence drives the decision
whether to link or not, and, in the first case, which entity consider as the
annotation.

The combination of ranking and decision making are the core of a disam-
biguation algorithm. Filters over candidates and scoring used in ranking can con-
tribute to decision making: if after filtering the ranked list of candidates is not
empty, the top candidate can be selected for the annotation, otherwise the cell is
not annotated. Other decision making strategies can use thresholds; however, it
is difficult to apply thresholds over scores that are not bound, which is typical for
scores returned by matching functions powered by search engines and available
lookup services; search engines, on the other side, offer very efficient search over
the vast amount of information stored in KGs. As a results, lookup services usu-
ally combine string similarity, document frequencies (e.g., Lucene-based scores),
and even other aspects like popularity (the DBpedia Lookup Service” exploits
entity popularity measures, i.e., inlinks pointing at the candidate). These consid-
erations make filters and scoring particularly relevant. In this paper, we focus on
type-based filters, and on the entity similarity used for scoring the candidates.
As anticipated in Section 1, we believe that algorithms proposed by [6] provide
state-of-the-art solutions in terms of trade-off among generality, performance, and
scalability (see Section 2 for a more detailed discussion of related work).

3.1. Linking pipelines in FactBase and EmbeddingsOnGraph

Before explaining how the proposed methodology can support the selected CEA
pipelines [6], we prefer to discuss these approaches with sufficient amount of details
in such a way to ease the understanding of our methodology and its evaluation,
as well as to make this work self-contained, favoring the replicability.

3https://wiki.dbpedia.org/lookup
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FactBase The algorithm works column-wise, i.e., it examines all the cells of an
entity column, it exploits direct entity types for filtering on candidates (filter by
type) as well as representative language tokens (filter by token), and uses the
values in the other columns to match facts in the KG and expand the set of
candidates. It implements a pipeline that consists of a preliminary step and three
entity annotation steps:

o Candidates retrieval and schema-level annotation. All the labels in the en-
tity column are looked up in the index returning, for each label, a list of
candidates ordered by the lookup service score. For each label, the algo-
rithm looks at its top ranked candidate to extract (from the KG) its di-
rect types and its textual description, which is processed (e.g., stop words
are discarded) to return a set of tokens. Given all the entity types and
description tokens extracted for all the labels in the column, the k-most
frequent types (in the original work, k = 5) and the most frequent token in
the information extracted for all the labels are associated to the column,
thus returning a set of column types and one column token. The algorithm
then uses unambiguous labels, i.e., labels for which one unique candidate is
found, to understand which columns in the table describe facts about the
entities that are also present in the KG. Given the entity column C; under
evaluation, it tries to annotate a context column C} with a KG property
P that describes the relation between the labels in the entity column and
the values in the context columns. When a context column C, is annotated
with a property P also used in the KG, a fact P(label; ;, value; ;) can be ex-
tracted from the ith row of the table and used to look up more candidates,
and, in particular, all those entities = for which the fact P(x,value, ) is
part of the KG, thus expanding the set of candidates for a given label.
To choose the properties to annotate some of the context columns, the
algorithm picks each unambiguous label in the C; column and, for each
context column C}, matches the pair (label; ;,value, ;) against all the in-
dexed facts. A property P is chosen to annotate a context column if it
matches facts extracted from at least n different rows (the original work
heuristically set n = 5) that have unambiguous labels. If more properties
satisfy this constraint, the most frequent property is selected. We refer to
this property as to the context column property. As a consequence of this
step, the entity column under attention is annotated with a set of its (five)
column types and its most frequent token, while some context columns are
annotated with a property.

e Annotation by lookup - for unambiguous labels. Unambiguous labels found
in the previous step are annotated with their unique candidate entity.

o Annotation by strict lookup for ambiguous labels: this step refines the can-
didates list of ambiguous labels for which more than one candidate was
found, by filtering out candidates that have types that differ from the entity
column types and a description that does not contain the most frequent
token. The label is annotated with the candidate with the highest score.

e Loose lookup for labels without candidates: this step looks for new candi-
dates for the labels which annotation is still missing; given the context
columns annotated in the first step with a property, this step retrieves as
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candidates all the entities that match some of the indexed facts of the KG,
as explained in the preliminary step. The new set of candidates is then
ranked based on the edit distance between the entity name and the label
in the entity column. The first candidate is used to annotate the label in
current cell.

EmbeddingsOnGraph The algorithm can work column-wise, row-wise or table-
wise. It does not apply any filter by type mechanism and is based on the con-
struction of a disambiguation graph like several approaches also applied to named
entity linking [15]. We describe the column-wise approach that was tested in the
original algorithm,4 and we use in our experiments. A set of candidates is re-
trieved for each label in the entity column by selecting the best m matches using
a char-level trigram similarity with a threshold o (where m = 8 and o = 0.82 in
the original paper). All the candidate entities for each label represent the nodes
of the disambiguation graph; each node has i) a prior probability, which is based
on the degree (in links + out links) of the corresponding DBpedia page (see the
original paper for details), and ii) an embedding that represent the entity. Each
pair of candidates from different sets is connected by an edge, which is weighted
by the cosine similarity of the respective embeddings. Finally, the priors are up-
dated by executing PageRank on the constructed graph; the candidate with the
highest score in each set is chosen for the annotation.

Hybridl /Hybridll  The hybrid models sequentially combine the baselines; Hybridl
executes FactBase first, then annotates cells without an annotation with using
EmbeddingsOnGraph; Hybridll works in the other way around.

4. NEST: Candidate Selection with Soft Type Constraints

NEST (NEural Soft Type Constraints) is a methodology to replace hard con-
straints based on entity types adopted in CEA pipelines. The methodology re-
lies on distributed representations of entities, i.e., entity embeddings, which can
be computed with different approaches [16]. We consider two strategies to in-
clude soft type constraints, addressing two patterns used in previous work and,
especially, in the unsupervised state-of-the-art algorithms described in Section 3:

e the first strategy, type enrichment for filtering by type, combines direct
types with types predicted by a neural model to refine type-based filtering.
The neural model relies on distributed representations of entities for type
prediction. Given an input vector representing an entity, a neural network
returns a probability distribution over the possible entity types. The dis-
tribution can be used to select a list of most probable types according to

“The approach used in the original work was not explicitly stated. The table-wise approach
combines richer information but at the price of scalability for large tables with thousands of
rows; the row-wise approach demands for embedding that maximizes the relatedness between
entities, like the ones used in the original work, while the column-wise approach should exploit
embeddings which maximize the type coherence between similar entities. These aspects are not
discussed in [6], but we suppose the original algorithm works column-wise because it has been
tested only on datasets featuring tables with at most one entity column.
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the network, which can enrich (or refine) the set of direct types, e.g., by
predicting the type Philosopher for Albert Einstein. This strategy will
be demonstrated by applying it to the FactBase algorithm.

e the second strategy, type enrichment for ranking by distributed entity rep-
resentations similarity, starts from the consideration that entity embed-
dings are particularly useful to evaluate entity similarity, and evaluating
the similarity between candidate entities in a same column helps entity dis-
ambiguation like in the EmbeddingsOnGraph algorithm. However, the type-
level characterization is not explicitly featured in popular entity embed-
dings, e.g., RDF2Vec. To feature type-level information more explicitly in
the embeddings, we rely on type embeddings [17], i.e., distributed represen-
tations of entity types: given the vector of an entity e and the vector of its
type t, the two vectors are concatenated generating a final representation,
a typed entity embedding, in a vector space where entities that share the
same types are closer [17]. In this way, the type-parts of the concatenated
vectors induce a sort of soft (type) constraint over the selected annotations.
For example, if the vector Philosopher is concatenated to the vector of
Albert Einstein, this candidate entity will be more similar to other en-
tities of type Philosopher; otherwise, since Philosopher and Scientist
are similar in the type space, even if we concatenate the vector Scientist,
the similarity between Albert Einstein and other philosophers will not
be penalized too much.

A clear advantage of NEST is its modularity. The two methods can be used
jointly and also integrated into different pipelines with near to zero engineering
disruption. Different entity and type embeddings and different type prediction
models can be adopted for NEST. For type embeddings, we use Type2vec [17], a
model inspired by distributional semantics that does not require expressive and
rich ontologies. Type2Vec embeddings are obtained by annotating a text with enti-
ties, replacing the entities with their direct type and then applying Word2Vec [18]
to generate the embeddings. In Section 4.1 we describe two neural prediction mod-
els working with different source of information, while in Section 4.2 we explain
in detail how we featured these strategies into algorithms by [6] to demonstrate
their effectiveness.

4.1. Type Prediction Models

The two Deep Neural Networks (DNNs) introduced for type prediction are de-
picted in Figure 2 and take as input embeddings generated with different models.
The first one uses embeddings generated with RDF2Vec [19], which creates a vir-
tual document containing random walks over a KG and then applies Word2Vec
on this document. The second one uses entity embeddings generated from tex-
tual descriptions using Bidirectional Encoder Representations from Transform-
ers (BERT) [20], which has shown strong performance over several downstream
tasks in different languages [21]. Thus, for generating BERT Entity Embeddings
(BERT EE), we collect DBpedia abstracts, and for each entity, we extract token
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RDF2VEC (200) BERT EE (1024)
} |
Linear 300 + ReLU Linear 300 + ReLU
| '
Linear 300 + ReLU Output
|
Output

Figure 2. The two architectures used in this paper, numbers describe layer size.

embeddings from its abstract with BERT,5 and then we represent the entity with
the average vector of the token embeddings of its abstract.

The architectures have been selected with respect to the performances ob-
tained at validation time and we use early stopping to prevent overfitting. Both
DNNs are trained to reduce the categorical cross-entropy loss. To predict the type
of an entity, NEST implements a classifier modeled as a straightforward DNN,
which learns to map entities with similar embeddings to the same type. As an
example, we obtain that the entity Albert Einstein, whose embedding is similar
to the embeddings of other scientists and philosophers, has an high probability of
being of type Scientist and of type Philosopher. While architecturally simple,
the DNNs in NEST can be trained quickly with already available data and it does
not require sophisticated hardware to be trained. This increases the applicability
of the methods to different KGs.

4.2. NEST-enriched algorithms

FactBaseST Since FactBase uses the column types and the column token to
filter out the retrieved candidates, we enhance this algorithm by exploiting the
neural type prediction models, trained and executed over DBpedia (see details
below), instead of relying only on the direct types from the KG. The usage of
predicted types in FactBaseST aims to capture two intertwined intuitions: (i)
Predicted types for all entities in a column can provide additional evidence to
determine the correct column types thus reducing the set of column types used as
filters subsequently; (ii) By enriching the set of types associated with a candidate
entity (e.g., by adding the type Philosopher to Albert Einstein), the filters
applied to individual candidates are softened and become less sensitive to missing
type information or mismatches between the intended conceptualization in the
table column and the classification in the KG. More precisely, these intuitions are
captured as follows:

e The set of column types extracted from the KG is refined by retaining only
types predicted also by the neural type prediction model (if any, otherwise,
direct types are preserved). The set of predicted types used in this refine-
ment consists of the A most frequent types among all the most likely types
predicted for each candidate. We chose h = 5 as for the column types.

SBERT has a limit on the number of input tokens, if the sentence we pass to it contains more
tokens, the rest is ignored.
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e The set of types associated with each individual candidate is extended
by considering also the two most likely types predicted for the candidate.
We consider only the first two predicted types because we found that this
reflects the average number of different direct types in DBpedia, for the
entities that have more than one direct type.

By considering the two neural type prediction models described in Section 4,
we implemented two versions of FactBaseST:

e FactBaseST-R2V uses the DNN based on RDF2vec to predict types. The
network has been trained using 200-dimensional vectors of ~200k DBpe-
dia entities as input [19] (1000 samples per type); we removed those types
with less than 1000 instances to reduce variability (e.g., Bowlingleague
and MouseGene), resulting in 236 different predictable types. This network
does not exploit the textual description of entities, thus it can be applied
to almost every KGs. This DNN has shown remarkable performance, sur-
passing 0.90 in accuracy score both on the training and on the validation
set (that is run 20% of the data, we use early stopping on the validation
loss with a patien066 equal to 4) on the type prediction task.

e FactBaseST-A2V, uses the DNN based on BERT EE to predict types, which
is suitable for a KG that includes a textual description of its entities. We
trained the DNN in FactBaseST-A2V with embeddings generated by feed-
ing a pre-trained large BERT model (1024-dimensional vectors) with ab-
stracts of DBpedia entities. Like above, we sampled 1000 samples per type
removing those types with less than 1000 instances, but we also had to
remove from the training set the entities without an abstract, resulting
in 228 different predictable types. This DNN scores slightly above 0.90 in
accuracy score on the type prediction task (same conditions as above).

EmbeddingsOnGraphST This algorithm is an extension of EmbeddingsOnGraph
and differs only in the - small but conceptually relevant - difference that typed
entity embeddings are used to computed the similarity instead of plain entity
embeddings. We remind that this mechanism makes entities with similar predicted
types have a higher cosine similarity; as a consequence, when the PageRank is
computed, the weight of edges between entities of the same type increases while
the weight of edges between entities of different types decreases further, thus
implementing the soft constraint over the similarity that we aimed to capture.

HybridIST /HybridlIST The algorithms jointly apply FactBaseST and Embed-
dingsOnGraphST (as for their original implementations), generating the variants
HybridIST-R2V, HybridIST-A2V, HybridlIST-R2V, HybridlIST-A2V.

5. Experiments and Results

Our experiments can be replicated using the documented code we release.”

5Maximum number of epochs with no improvement before stopping the training.
"Source code available at https://github.com/vcutrona/nest.
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Table 1. Profiles of benchmark datasets.

" Cols with
Dataset Cols (avg) Rows (avg) Matches Entities Tables
matches (avg)
T2D 1,153 (4.95) 28,333 (121.60) 26,124 13,785 233 (1.00) 233
ST19-R4 3,564 (4.36) 51,249 (62.73) 107,352 53,007 1,732 (2.12) 817
2T 802 (4.46) 194,438 (1080.21) 663,656 15,997 540 (3.00) 180

We recreated the SemTab 2019 environment for the CEA task, thus we used
DBpedia 2016-10 as the target KG and we scored the algorithms using the macro
Precision (P), Recall (R), and Fl-score (F1) metrics [1].

Datasets In our experiments we considered three datasets (Table 1):

e T2D [7] is a small dataset with only limited contents, but still represent
a reference dataset in the literature; we also used it to better observe the
impact of the adaptation we made while re-implementing the original al-
gorithms. We did not use the other datasets tested with the original algo-
rithms (Limaye [13] and Wikipedia [6]) because Limaye has a profile simi-
lar to the T2D one, but with smaller tables and less columns to annotate;
Wikipedia features only very small tables (23 cells in average to annotate
for each column), and anyway it has been partially included in the SemTab
dataset.

e ST19-R4 is part of SemTab 2019 [1]. This dataset is the only one in SemTab
that contains only non-trivial cases.® More importantly, ST19-R4 has been
built using a generator, which constructs tables by querying DBpedia. Each
table has one class as the main topic, and the other columns are filled with
values of a predefined pool of properties of each instance. The generator
ensures that the type of the object property matches the expected range
in the ontology [1]. Thus, the problem we are addressing in this paper
has been artificially removed from ST19-R4. As an example, in a table
about Film, the actor Arnold Schwarzenegger, typed as OfficeHolder
in DBpedia, will be filtered out from the results of the property starring,
which has range Actor. For this reason, NEST is not expected to improve
the results on ST19-R4, making it a good resource to study the possible
negative impact of applying NEST to algorithms.

e Tough Tables (2T) [3] features ambiguous and noisy tables that resemble
real-world cases. 2T has been included in the last round of SemTab 2020,
showing that its high ambiguity makes it harder than any other dataset.’

Algorithms To demonstrate the generality of NEST, we looked for algorithms
in literature to use in our experiments. However, just a few CEA algorithms are
open-source, with some limitations (e.g., MantisTable [10] has scalability issues;

8The performance obtained in SemTab 2019 for this dataset were high, also thanks to hard-
coded workarounds adopted by the participants [22] that we did not implement.

9Performance with the Wikidata version of 2T is dramatically reduced for all the systems
that participated in the SemTab 2020 challenge [2].
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the repository of CSV2KG [22] is incomplete. Authors of the best performing
systems in SemTab 2019 (MTab [5], Tabularisi [11], and CSV2KG [22]) reported
that their systems were not ready to be released.

Thus, in our experiments we applied NEST to the algorithms described in
Section 4 because they employ the filtering and ranking strategies we want to test
with NEST, and can scale reasonably (i.e., annotating selected datasets takes a
few hours). The source code of these algorithms is not available, but they are
partially reproducible since they have been explained in detail [6]. We tested
our re-implemented versions on T2D - used in the original work - observing low
performance compared with the original results.'® In our opinion, the performance
decrease is due to the following factors:

e In the original work, the private FactBase index was used; the index in-
cluded documents from Wikipedia, WikiData and DBpedia (not provided).
Thus, we generated a new ElasticSearch index containing entities from DB-
pedia, their 1abels,11 and their anchor texts from Wikipedia. We preferred
to not include Wikidata in our index to reduce the amount of total memory
needed to store it.

e Within FactBase, the description field of WikiData entities is crucial for
the candidate disambiguation phase. The corresponding property of this
field in DBpedia is dct:description, which however is missing for many
entities (e.g., Milan). We resembled it by analyzing the DBpedia short
abstracts, which leads to different descriptions.

e The queries to the index are not publicly available, thus it is not possible
to either reuse the same strategies (e.g., fuzzy match) or apply the same
parameters (e.g., max edit distance in fuzzy search).

e We used the RDF2Vec vectors (uniform model from [19]) in Embedding-
sOnGraph, which differ from the embeddings used in the original work.

Given the above limitations, we managed to replicate the disambiguation pipelines
of the original algorithms, while the lookup search is suboptimal.

The original algorithms annotate rows, based on the one entity per cell as-
sumption. We provided a generalization of the algorithms by exploiting their
column-wise nature: we can annotate tables with multiple entity columns by con-
sidering one entity column at a time, and setting the other as context columns,
thus annotating individual cells instead of entire rows.

For our experiments, we modified the original EmbeddingsOnGraph algorithm
to avoid scalability issues; in fact, running EmbeddingsOnGraph on a table with
5000 rows will lead to the creation of a disambiguation graphs with 40k nodes in
the worst case (if all the top-8 candidates for each label are distinct) and ~800M
edges. The disambiguation graph is a k-partite graph; thus the maximum number
of edges is (k1) in the worst case. We thus split big tables in chunks of 500
rows each to execute the algorithm on large tables.

RN proper comparison is not possible because we computed the macro P, R, and F1 (as in
SemTab), while the original work reported their micro versions. We report the original scores to
help the reader in quantifying the gap: FactBase (P: 0.88, R: 0.78, F1: 0.83); EmbeddingsOnGraph
(P: 0.86, R: 0.77, F1: 0.81).

We also include the labels from the DBpedia Lexicalization datasets.



V. Cutrona et al. / NEST: Neural Soft Type Constraints to Improve Entity Linking in Tables 41

Table 2. Results for benchmark datasets. # identifies our algorithms. Highlighted, best result
for each dataset; bold text, best results for each algorithm.

T2D T19-R4 2T
Method | ST19

P R F1 | P R F1 P R F1
EmbeddingsOnGraph 0782 0.723  0.751 | 0.483 0470 0477 | 0293 0245  0.267

EmbeddingsOnGraphST & = 0.811 0.751 | 0.780 ‘ 0.540 0.526 0.533 | 0.378 0.316 0.344

|

|

|

|
FactBase 0.791 0.635 0.704 ‘ 0.745 0.465 0.573 ‘ 0.365 0.185 0.246
FactBaseST-R2V & 0.789 0.638 0.706 ‘ 0.731 0.454 0.560 ‘ 0.434 0.241 0.309
FactBaseST-A2V & 0.783  0.638 0.703 ‘ 0.735 0.458 0.565 ‘ 0.374 0.216 0.274
Hybridl 0.756 0.740 0.748 ‘ 0.530 0.526 0.528 ‘ 0.275 0.231 0.251
HybridIST-R2V & 0.766 0.751 0.759 ‘ 0.549 0.544 0.546 ‘ 0.355 0.299 0.324
HybridIST-A2V & 0.762 0.746 0.754 ‘ 0.551 0.547 0.549 ‘ 0.317 0.266 0.289
Hybridll 0.758 0.742 0.750 ‘ 0.488 0.484 0.486 ‘ 0.295 0.248 0.270
HybridlIST-R2V & 0.784 | 0.768 0.776 ‘ 0.544 0.540 0.542 ‘ 0.380 | 0.319 0.347
HybridlIST-A2V & 0.784 | 0.768 0.776 ‘ 0.544 0.540 0.542 ‘ 0.380 | 0.319 0.347

We remark here that the gap in the algorithms performance does not impact
on our analysis, which is fair over the different models.

5.1. Results

Table 2 confirms that the use of NEST can improve state-of-the-art matching
pipelines. As expected, applying NEST to EmbeddingsOnGraph increases the F1
score in all our tests (T2D: +2.9%; ST19-R4: +5.6%; 2T: +7.7%) because using
typed entity embedding strengthens the similarity between entities of the same
type; as a result, since EmbeddingsOnGraph is a column-wise approach, the typed
entity embeddings can guarantee a higher column type coherence, which was
completely disregarded in the original work. Also considering the improvement
brought by the application of NEST, results on 2T are still poor. The main reasons
are that i) the candidate retrieval phase is based only on the trigram similarity
and uses a high threshold, returning a small set of candidates, and ii) the priors
used to initialize PageRank are based on the entity popularity, which rewards
popular entities in almost the cases, but 2T contains tables with many homonyms,
which often do not link to the most popular mentioned entity.

FactBase does not benefit a lot from NEST when annotating T2D and ST19-
R4, while its contribution is more valuable on 2T. We observe similar results for
FactBaseST-R2V and FactBaseST-A2V, showing that the type information can
be predicted alternatively from textual and factual descriptions, when both are
available. However, we did not have enough evidence to prefer one source over the
other for similar KGs. The performance on T2D are in line with the one achieved
by the original algorithm (< 1%): the recall slightly increases, while the precision
drops a bit; this is the expected behaviour, since types in T2D are homogeneous
in each column; furthermore, tables in T2D are mainly collected from Wikipedia,
the same source used to create DBpedia, so there is an overlap between the
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information in Wikipedia and the entity representations in the KG. If there is
a mismatch, like the example of Albert Einstein in Section 3, NEST helps
increasing the performance, but in all the other cases, considering the secondary
type of an entity may add noise into the matching pipeline. This effect is amplified
in ST19-R4, where we knew in advance that there was a perfect match between
the content of the tables and the type information in DBpedia. Interestingly, the
performance drop is limited (-1% in P and R), proving that NEST does not
critically affect the original performance; moreover, the small loss on this specific
dataset is balanced by the consistent gain in all the other settings where the
artificial removal of this problem does not occur. We observe that the standard
FactBase pipeline underperforms on 2T, mainly because the candidate retrieval
step is not able to deal with the values in 2T tables, which are ambiguous and
perturbed with typos. However, using NEST to relax the type-based filtering leads
to a valuable performance increase (+6.3% and +2.8% for FactBaseST-R2V and
FactBaseST-A2V respectively), helping the algorithm to disambiguate the higher
number of candidates. Hybrid methods improve the recall of their main method
at cost of precision. Results of Hybridll-based algorithms are highelr12 thanks to
the better performance of their main EmbeddingsOnGraphST method.

6. Conclusions and Future Work

In this paper we presented NEST, a novel methodology to include soft type-based
constraints into an entity matching pipeline. NEST is modular and can be applied
with nearly zero effort. Our experimental campaign shows how state-of-the-art
algorithms can benefit from the use of NEST, testing different NEST-improved
algorithms on benchmark datasets with different profiles. In our experiments, we
used DBpedia as target KG, and we expect NEST achieving similar results on
KGs with a similar type hierarchy granularity (which is a typical size in entity
linking in tables). As future work, we plan to investigate the application of soft
constraints to matching algorithms that target KGs with a more fine-grained type
hierarchy (also by many order of magnitude, like YAGO); in this scenario, training
a type prediction model could be challenging. Also, we are interested in finding
more insights about possible error patterns, studying if the prediction models
are biased towards specific types. Finally, we want to investigate the effects of
replacing the prediction models with more complex models [4], and relaxing filters
for entities linked on the same row, so that to increase their relatedness.
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