
Building a Modular Health Information
Crawler: Leveraging Apache Nutch for

the Tala-Med Search Engine

Nanxing DENGa, Martin BOEKERb, and Raphael SCHEIBLEb,1
a

 School of Computation, Information and Technology, Technical University of Munich,
Germany

b
 Institute for AI and Informatics in Medicine (AIIM), TUM University Medical Center,

Technical University of Munich, Germany

Abstract. Developed in 2020, the tala-med search engine provides high-quality,
evidence-based health information from trustworthy German websites while
ensuring user privacy. However, it still leaves room for technical improvements. In
the present work, we are replacing the Fess crawler with Apache Nutch to improve
scalability and customization, as Nutch offers greater flexibility for large-scale web
crawling and indexing. The new system uses Docker to integrate five services:
PostgreSQL for configurations, Nutch for crawling and indexing, and ElasticSearch
for search operations; a Manager orchestrates the process with custom
configurations via extended Nutch-REST interface. The configuration options
include domain-specific URL filters to select the crawled content. A test crawl
demonstrated the system's effectiveness, processing approximately 23k websites
over 65 hours. Future work will focus on deploying the crawler long-term and
generating a search index for further analysis. We have published our code under
the MIT license at https://gitlab.com/mri-tum/aiim/search-platform/crawler.

Keywords. Information Storage and Retrieval, Software Design, Health
Information Systems, Search Engine, Online Systems, Data Systems, Web-Crawler

1. Introduction

The internet is a key source of health information, but content quality from popular gen-
eral search engines varies, posing challenges for individuals with low health literacy
[1-3]. General search engines often fail to meet the specific needs of healthcare pro-
fessionals and diverse users, highlighting the importance of accessible and personalized
health information systems [4,5]. To address this, the tala-med search engine was devel-
oped in 2020, delivering high-quality, evidence-based German health information while
maintaining user privacy [6]. In contrast to the ’Sampled German Health Web’ (sGHW)
project [7], which employed automated filters, tala-med depends on manually curated
health websites. Specht et al. [6] assessed the search engine’s usability and acceptance
through a study involving 802 participants. The results showed high acceptance, espe-
cially among older users and those with lower health literacy, with positive feedback on

1 Corresponding Author: Raphael Scheible, AIIM, TUM Klinikum rechts der Isar, Ismaninger Str. 22,

81675 München, Germany; E-mail: raphael.scheible@tum.de.

Intelligent Health Systems – From Technology to Data and Knowledge
E. Andrikopoulou et al. (Eds.)

© 2025 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI250423

622

the absence of ads and adjustable filters. However, some users suggested design
improvements and the authors discussed the potential for technical improvements. The
objective of this work is to replace the existing Fess crawler [8] with Apache Nutch [9],
using its modular architecture, extensibility and built-in scalability to provide a robust
solution for large-scale crawling. The new system integrates PostgreSQL for domain
retrieval and ElasticSearch for indexing. To demonstrate the success of the transition, a
test crawl is performed, followed by a feasibility analysis. Moreover, we have published
our code.

2. Materials and Methods

2.1. Requirements and Design

The system must retrieve domains from PostgreSQL, index results in ElasticSearch, and
include raw HTML for metadata tasks. It should be scalable, adaptable, and support a
definable crawling schedule. Non-functionally, the system must enhance extensibility,
customization, and stability, and be reliable, maintainable, and well-documented. Con-
tainerization with Docker ensures scalability and efficient management, and it can serve
as a foundation for future distributed deployment. The system is modular with five ser-
vices (see Figure 1): Manager (orchestrates crawling), PostgreSQL (stores configurations
and history), Nutch-REST (extends Nutch’s REST interface), Nutch (crawls and indexes
data), and ElasticSearch (stores and provides data). These services, all containerized with
Docker, communicate over a network with shared volumes.

Figure 1. Flowchart of the crawling process. The Manager initiates and configures crawls using

configurations stored in PostgreSQL. The Nutch-REST server configures Nutch and passes crawl jobs to
Nutch which interacts with the ElasticSearch database to store the crawled data.

2.2. Implementation

PostgreSQL organizes data into seven tables, which manage seed configurations, crawl
statuses, and historical records. These tables also manage seed scheduling, enabling ad-
ministrators to define the frequency and timing of each crawl. The table design also
includes mechanisms to log errors encountered during the crawling process, aiding in
monitoring and troubleshooting.

Apache Nutch, an open-source web crawler, is designed for large-scale operations.
Its flexibility stems from a plugin system, which supports custom crawling and indexing
workflows. We decided to use the Nutch server instead of the crawl executable, since
the server’s API offers modularity in commands, and offloads the management of par-
allelism into the server’s queue. Besides, this choice allows us to control the Nutch op
erations from another managing component. Crawl configurations in Nutch are man-
aged through XML and properties files, with the primary configuration file being nutch-
site.xml. Specific configuration files include index-writers.xml for index destinations
and regex-urlfilter.txt for URL filtering. The system has around 1700 customizable

N. Deng et al. / Building a Modular Health Information Crawler 623

parameters. However, Nutch’s server API lacks support for creating URL filters,
demanding the development of a custom API to handle this. The regex filter helps
manage which URLs are crawled by including/excluding based on patterns. This ensures
efficient crawling by focusing on relevant domains and avoiding non-HTML resources,
irrelevant query parameters, and infinite loops. The filter is adapted to suit the needs of
each seed. The Nutch workflow begins with seed injection into the CrawlDB, which
manages URL tracking. URLs are then generated into a fetch list, which is dynamically
updated as new URLs are discovered. The fetcher retrieves web content from the target
URLs, followed by parsing, which extracts key data like titles and links. Parsed content
is indexed in ElasticSearch, facilitated by Nutch plugins that store raw HTML content
[10].

Nutch-REST extends Nutch’s server API, addressing limitations in managing URL
filter files. Implemented as a dockerized FastAPI [11] server, it acts as a proxy, managing
API calls between the Manager and Nutch. The Nutch-REST container shares a volume
with Nutch, enabling file system access. It distinguishes between standard Nutch API
calls and custom endpoints for managing URL filters and index configurations. The
Manager uses this setup to create tailored configurations for each seed, allowing dynamic
and flexible crawling processes.

Manager coordinates the entire workflow, connecting PostgreSQL, Nutch-REST,
Nutch, and ElasticSearch. It relies on several libraries and tools. Our nutch-python client,
a forked and customized version of the one originally developed by Chris Mattmann
[12], manages interactions with the Nutch server, creating configurations for seeds and
triggering processing tasks. It includes a RegexClient for handling URL filters via the
custom Nutch-REST endpoint. The PostgresClient uses SQLAlchemy [13] to interact
with PostgreSQL, retrieving and updating seed and filter data. It also logs crawl jobs
based on Nutch responses, enabling progress tracking. Scheduled by Cron, the Manager
retrieves active seeds from PostgreSQL and checks their crawl schedules. It configures
and runs crawl jobs by setting up seed entries and URL filters in Nutch. Parameters like
depth (levels of crawling) and topN (number of URLs to fetch) are configurable for
each seed. The Manager monitors the job, logging status updates and handling errors.

2.3. Test Crawl

To evaluate the system’s feasibility, a test crawl was conducted using a VM with a 4-
core Intel Xeon processor, 16 GB RAM, and Ubuntu 20.04.6 LTS with Docker. Due to
hardware limitations, only a subset of 17 domains from the original tala-med fetch list
was used. The crawl ran for 65 hours with 40 parallel threads, and each seed was set to
crawl every minute, ensuring continuous operation without downtime. The crawling pa-
rameters were set with a topN of 100 (width) and a crawl depth of 10, allowing a maxi-
mum of 1000 documents per crawl job. Custom regex URL filters were applied for each
domain, designed to restrict crawling within the target site’s domain and exclude non-
German content. This configuration ensured the crawl was efficient and focused, tailored
to the specific content needs while working within the system’s resource constraints.

3. Results

The evaluation of the Nutch crawler system focuses on feasibility using a subset of seeds,
with metrics logged in PostgreSQL and documents indexed in ElasticSearch. Over a 65-

N. Deng et al. / Building a Modular Health Information Crawler624

hour period, the test crawl captured 22,686 documents across 36 crawl jobs per seed.
Document count varied significantly depending on domain size and the strictness of URL
filters. The experiment’s documents per crawl job over time are depicted in Figure 2.

Figure 2. The number of documents per crawl decreases as the experiment progresses due to limited domain
size and URL filter settings. The maximum number of documents per crawl is 1000, the product of topN 100

and depth 10.

The number of documents per crawl declined over time as available content within
domains was exhausted. The maximum document count of 1,000 per crawl was
determined by the configured crawl width (topN of 100) and depth (10 levels). As stricter
regex filters limited the range of crawled URLs, fewer new documents were found,
leading to shorter crawl durations. The experiment effectively demonstrated the system’s
capabilities while exposing the effects of seed configurations, especially when handling
small or tightly filtered domains.

4. Discussion

While the current system faced challenges such as memory overflows due to insufficient
heap size, deploying it within Kubernetes clusters, with Helm charts or Kubernetes man-
ifests, could be explored in future work as a complementary approach to vertical scal-
ing, enhancing resource management and supporting the efficient processing of larger
datasets. Additionally, restrictions imposed by some domains’ robots.txt files hindered
content retrieval, which is beyond the scope of this study. Despite these issues, the sys-
tem’s integration potential is strong. It can connect with a frontend application, enabling
graphical management of seeds via an API, improving user experience. The collected
data holds value for Natural Language Processing tasks like content analysis and sen-
timent analysis. With extended operation, this crawler could generate an index analog
to the ”Sampled German Health Web” project [7], supporting analyses of health-related
content in the German language, as demonstrated by prior research in the field [14].

N. Deng et al. / Building a Modular Health Information Crawler 625

5. Conclusions

In this work, we successfully developed and deployed a new web crawler using Apache
Nutch, replacing the existing Fess crawler while meeting functional and non-functional
requirements. The system retrieves domains from PostgreSQL, indexes results in Elastic-
Search, and includes raw HTML content for future tasks. The test crawl, using Nutch on
a subset of seeds previously used by Fess, showed the convergence of the number of doc-
uments over time towards zero as crawlable content was exhausted due to domain size
and URL filters. Despite limited hardware, the Nutch crawler indexed 22,686 documents
over 65 hours with 36 crawl jobs per seed. This confirms the system’s functionality and
sets the foundation for further evaluation and optimization.

Acknowledgments

This work was supported by the German Ministry for Education and Research grant
number 01ZZ1804A, 01KX2121 and 01ZZ2304A.

References

[1] Schaeffer D, Vogt D, Berens EM, Hurrelmann K. Gesundheitskompetenz der Bev ̈olkerung in Deutsch-
land: Ergebnisbericht [report]. Universit ̈at Bielefeld, Fakult ̈at f ür Gesundheitswissenschaften. 2016.
Available from: https://pub.uni-bielefeld.de/record/2908111.

[2] Schaeffer D, Berens EM, Vogt D. Health literacy in the German population: results of a representative
survey. Deutsches ̈Arzteblatt International. 2017;114(4):53. Publisher: Deutscher Arzte-Verlag GmbH.

[3] Schaeffer D, Berens EM, Vogt D, Gille S, Griese L, Klinger J, et al. Health literacy in Germany: Findings
of a representative follow-up survey. Deutsches Aerzteblatt International. 2021;118(43):723. Publisher:
Deutscher Arzte-Verlag GmbH.

[4] Kritz M, Gschwandtner M, Stefanov V, Hanbury A, Samwald M. Utilization and Perceived Problems of
Online Medical Resources and Search Tools Among Different Groups of European Physicians. J Med
Internet Res. 2013 Jun;15(6):e122. Available from: http://www.jmir.org/2013/6/e122/.

[5] Zhang Y. Beyond quality and accessibility: Source selection in consumer health information searching.
Journal of the Association for Information Science and Technology. 2014 May;65(5):911-27. Available
from: https://asistdl.onlinelibrary.wiley.com/doi/10.1002/asi.23023.

[6] Specht L, Scheible R, Boeker M, Farin-Glattacker E, Kampel N, Schm ̈olz M, et al. Acceptance and
usability of an independent, non-commercial search engine for medical information: a cross-sectional
questionnaire study and user-behavior tracking (Preprint). JMIR Human Factors; 2024.

[7] Zowalla R, Wetter T, Pfeifer D. Crawling the German Health Web: Exploratory Study and Graph Anal-
ysis. J Med Internet Res. 2020 Jul;22(7):e17853.

[8] codelibs/fess: Fess is very powerful and easily deployable Enterprise Search Server.;. Accessed: 2024-
08-23. Available from: https://github.com/codelibs/fess.

[9] apache/nutch. The Apache Software Foundation; 2024. Accessed: 2024-08-23. Available from:
https://github.com/apache/nutch

[10] nutch/src/plugin at rda-crawl · b-cube/nutch · GitHub;. Accessed: 2024-08-23. Available from:
https://github.com/b-cube/nutch/tree/rda-crawl/src/plugin.

[11] Ram ı́rez S. FastAPI; 2024. Accessed: 2024-08-23. Available from: https://github.com/fastapi/
fastapi.

[12] Deng N. dengamusic/nutch-python; 2024. Accessed: 2024-08-23. Available from: https://github.
com/dengamusic/nutch-python.

[13] SQLAlchemy;. Accessed: 2024-08-23. Available from: https://www.sqlalchemy.org.
[14] Zowalla R, Pfeifer D, Wetter T. Readability and topics of the German Health Web: Exploratory study

and text analysis. PLOS ONE. 2023 Feb;18(2):e0281582. Publisher: Public Library of Science.

N. Deng et al. / Building a Modular Health Information Crawler626

