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Abstract. Manual segmentation of histopathological images is both resource-
intensive and prone to human error, particularly when dealing with challenging
tumor types like Glioblastoma (GBM), an aggressive and highly heterogeneous
brain tumor. The fuzzy borders of GBM make it especially difficult to segment,
requiring models with strong generalization capabilities to achieve reliable results.
In this study, we leverage the Medical Open Network for Artificial Intelligence
(MONAI) framework to segment GBM tissue from hematoxylin and eosin-stained
Whole-Slide Images. MONAI performed comparably well to state-of-the-art Au-
toML tools on our in-house dataset, achieving a Dice score of 79%. These promis-
ing results highlight the potential for future research on public datasets.
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1. Introduction

Glioblastoma (GBM) is among the most aggressive and deadly forms of brain tumors,
presenting significant challenges in both diagnosis and treatment – especially due to their
high heterogeneity [1]. Effective segmentation of GBM tissue in histopathological im-
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(a) HE-stained Tile (b) Normalized Tile (c) Augmented Tile (d) Label for Tile

Figure 1. Visualization of an Example Tile (a) Prior and (c) After Preprocessing with its According Label
(White is Tumor) (d) and the Effect of Stain-Normalization (b).

ages is crucial for precise treatment planning [2]. Despite being the standard in many
clinical settings, manual segmentation is labor-intensive, costly and subject to inter-
observer variance due to its reliance on expert interpretation [3]. With the advancement
of machine learning, automated segmentation methods have become viable alternatives,
offering improvements in both speed and accuracy [1,4].

The Medical Open Network for Artificial Intelligence (MONAI) is an open-source
framework designed explicitly for analyzing medical images [4]. It provides compre-
hensive tools to develop, train, and evaluate models tailored to complex tasks, like the
segmentation or classification of tumor tissue. The study presented in this manuscript
evaluates whether the MONAI framework can be applied for GBM segmentation from
hematoxylin and eosin (HE)-stained Whole-Slide Images (WSIs). Code and model are
available at: https://github.com/hnu-digihealth/monai_gbm_segmentation

2. Methods

The model creation is split into three parts: (1) Data preparation and preprocessing, (2)
model development, and (3) model evaluation. All steps are based on the MONAI frame-
work, although other frameworks are used for sub-tasks.

2.1. Data Preparation and Preprocessing

An anonymized in-house dataset with 20,236 tiles from 103 HE-stained WSIs of 56
GBM patients is used in this study. Each tile has a dimension of 1,024 x 1,024 pixels.
A label marking neoplastic tissue was assigned to each tile, created by a trained neu-
ropathologist. The labels were refined using simple thresholding algorithms to reduce
off-tissue labeling. Given the variability in histopathological images, the data augmenta-
tion techniques random rotations, random flips, random contrast adjustment, and gaus-
sian noise were applied to increase the diversity of the training data and improve model
robustness [5]. All of these augmentations and the tile preprocessing are handled on-
line during the model training. Additionally, stain-normalization was applied to address
variations in color intensity, which may negatively impact the model’s generalizability
[6]. Although HE-staining is standardized, little differences in the chemical composition,
staining time, or the scanner used to digitize the WSI can introduce significant differ-
ences in hue and saturation [6]. The stain-normalization was realized using the modified
Reinhard method [7] from the torchstain framework [8]. The normalization was imple-
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Figure 2. Results of the Machine Learning Model on Test Data. From Left to Right: Input Image, Augmented
Image, Ground Truth, Segmentation Result (Tumor is white)

mented into the MONAI preprocessing composition by extending the MapTransform

class. Figure 1 shows the preprocessing steps applied to an example image.
The dataset was sampled into three stratified subsets (80%−10%−10% split): train-

ing, validation, and test. The training set (n = 16,186) was used to develop the models,
leveraging the labels to guide the learning process. The validation set (n = 2,027) served
to prevent overfitting, while the test set (n = 2,023) was reserved for the final evaluation
of the model’s performance on unseen data.

2.2. Model Development

The U-Net architecture was chosen for this study, as it currently is the gold-standard
architecture for medical image segmentation [9,10].

The model was trained without pre-trained weights, allowing the model to learn fea-
ture representations directly from the training dataset, using the Adam optimizer. A learn-
ing rate scheduler was used to adjust the learning rate based on validation performance
dynamically. A custom loss, combining Dice Loss and Focal Loss, was implemented to
handle the class imbalance inherent in the dataset, ensuring that both small and large re-
gions within the images were accurately segmented. The training was set to a maximum
of 150 epochs with early stopping criteria to monitor the validation loss [11].

For the model implementation, PyTorch Lightning was used to streamline the train-
ing process, offering advanced features (e.g., model checkpointing, improved logging),
thereby enhancing the overall efficiency of model development. MONAI directly sup-
ports PyTorch Lightning allowing its use without additional development effort.

The validation was evaluated using MONAI’s F1/Dice and Intersection over Union
(IoU) implementation. Both metrics are standard in image segmentation tasks and mea-
sure the overlap between the predicted segmentation masks and the ground truth labels
[12]. During validation, the metrics were calculated as a mean for each batch, and after an
epoch, all batch-wise means were averaged in a total mean value (MONAI’s mean batch

reduction method). The ignore empty parameter of the metrics was set to false. This
was done to achieve the same results with the MONAI metrics as with scikit-learn’s f1
and Iou metric [13], increasing the robustness and reproducibility of the evaluation.

2.3. Model Evaluation

After training, the model was evaluated on the test set, which consisted of unseen data.
The evaluation metrics remain MONAI’s Dice and IoU. Instead of a batch-wise reduc-
tion, the mean value of all individual results in the test dataset was calculated. This
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Figure 3.: Fitting Curve of Model Train-
ing

Metric Model Score

Dice
Our (MONAI) 0.790
deepflash2 0.819
nnU-Net v2 0.768

IoU
Our (MONAI) 0.743
deepflash2 0.773
nnU-Net v2 0.718

Table 1.: Performance on the Test Set of
our Model (MONAI) in Comparison with
other Established Frameworks like nnU-
Net and deepflash2

provides more accurate results while at a higher resources cost and, therefore, was only
done during testing. The results are further compared with metrics of current state-of-
the-art AutoML tools nnU-Net v2 [14] and deepflash2 [15] on the same dataset.

3. Results

Figure 2 shows the segmentation of the final model compared to the label provided by
a domain expert from neuropathology. Figure 3 and Tabel 1 depict the progress during
training and the final results of the model. In total, the model trained for 102 epochs
and was terminated by early stopping after reaching its best score in epoch 80. The final
test scores were Dice: 79.00%, IoU: 74.33%, proving superior performance compared
to nnU-Net v2 (Dice: 76.8%, IoU: 71.8%) while being inferior to deepflash2 (Dice:
81.9%, IoU: 77.3%) from an earlier study on a subset of the used dataset [16].

4. Discussion

This study demonstrates the efficacy of the MONAI framework for histopathological
tumor segmentation. Applying the U-Net architecture within the MONAI framework
proved effective, with the model achieving high scores in both Dice and IoU. The imple-
mentation was easy due to the available MONAI transformers and their great extendabil-
ity. Additionally, the custom loss function, which combined Dice Loss and Focal Loss,
contributed to the robustness of the models by effectively managing the class imbalance
and ensuring accurate segmentation across large and small regions. Compared to the Au-
toML solutions, MONAI has proven itself to be equivalent in this setting. However, dif-
ferences in training subsets, stain normalization, and hardware configurations, due to a
different focus of the study [16], limit direct comparison with the AutoML frameworks.
Future work should address these differences to ensure a robust and fair comparison.

5. Conclusion

This study demonstrates the potential of the MONAI framework for segmenting GBM
tissue in histopathological images. The integration of a U-Net architecture, combined
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with data augmentation, stain normalization, and a custom loss function, achieved com-
petitive results in terms of Dice and IoU metrics. These findings highlight MONAI’s
ability to handle the variability and complexity of histopathological data and its compet-
itiveness with state-of-the-art AutoML tools.

Future work will focus on evaluating MONAI against AutoML technologies on pub-
lic datasets to enable a robust comparison and assess the generalizability of the models.
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