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Abstract. The integration of artificial intelligence (AI) into medical informatics 

presents significant opportunities to enhance healthcare through data-driven 
diagnostics, predictive analytics, and personalized therapeutic recommendations. 

This paper examines the role of general intelligence in improving the effectiveness 

and adaptability of AI systems in complex clinical environments. We explore 
various levels of generalization – local, broad, and extreme – highlighting their 

respective contributions and limitations in healthcare. Local generalization provides 

robust assessments based on well-defined risk factors, while broad generalization 
allows for nuanced patient stratification across diverse populations. Extreme 

generalization, however, presents the greatest challenge, requiring AI systems to 

adapt to entirely new contexts without prior exposure. Despite advancements, 
existing metrics for assessing generalization difficulty remain inadequate, 

necessitating the development of new evaluation methodologies. 
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1. Introduction 

The integration of artificial intelligence (AI) into healthcare offers valuable opportunities 

to enhance healthcare through data-driven diagnostics, predictive analytics, and 

personalized therapeutic recommendations [1, 2]. The effectiveness of these systems 

largely depends on their "intelligent" processing capacity. General intelligence, often 

referred to as the "g-factor" [3], describes a system's or individual's ability to process 

new information, generalize across contexts, and solve unknown problems (unknown 

unknowns). Leveraging this general intelligence factor in medical applications could 

significantly improve the effectiveness and adaptability of such systems, enhancing their 

performance in complex, often unpredictable clinical environments [4]. 

In this context, two critical questions arise: How can the g-factor be measured, and 

is its consideration necessary in healthcare? The psychometric literature documents 

numerous approaches to measuring general intelligence [5]. A seminal paper, "On 

Measuring Intelligence", synthesizes the relevant discussions on intelligence 

 
1 Corresponding Author, Murat Sariyar, Bern University of Applied Sciences, Quellgasse 21, CH2502 

Biel/Bienne, Switzerland; E-mail: murat.sariyar@bfh.ch. 

Envisioning the Future of Health Informatics and Digital Health
J. Mantas et al. (Eds.)
© 2025 The Authors.

This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/SHTI250052

76

https://orcid.org/0000-0003-3432-2860


measurement within the framework of artificial intelligence [6]. It emphasizes that, in 

practice, benchmark datasets such as SuperGlue are often utilized, alongside extensive 

human evaluations and white-box analyses, to assess the performance of AI systems [7]. 

This paper examines the significance general intelligence and associated notions in 

healthcare, explores existing methodologies for intelligence assessment, and addresses 

the challenges of implementing these metrics in clinical practice. 

In the following section, we will present three forms of intelligence according to [6] 

and discuss how priors, experience and generalization difficulty factors in. Subsequently, 

we will discuss whether general intelligence is sufficient for all tasks or, conversely, 

whether it is unnecessary and that task-specific skills alone are adequate.  

2. Methods 

Intelligence can be assessed based on the extent to which observed phenomena can be 

generalized to unobserved ones. The lowest form of this assessment is known as local 

generalization, which involves successfully performing a well-defined task – such as 

distinguishing benign from malignant tumors using CT images – on new data (known 

unknowns). The primary characteristic of local generalization is robustness [8]. The next 

level is referred to as broad generalization, which demonstrates human-level ability 

within a single, yet expansive, activity domain. An example of this would be a surgical 

robot capable of performing a variety of different procedures. At the highest level is 

extreme generalization, characterized by the ability to adapt to unknown unknowns 

across a wide array of tasks and domains. The key aspect of this level is skill-acquisition 

efficiency, which emphasizes the capacity to rapidly acquire new skills without relying 

on prior knowledge or experience beyond a foundational core knowledge base. 

Information processing systems can be conceptualized along a continuum, ranging 

from fully static systems to highly adaptive, data-driven systems. At one end of this 

spectrum are static systems that operate based entirely on predefined priors – fixed, hard-

coded knowledge derived from established guidelines or expert input [9]. Examples 

include expert systems in clinical decision-making, which follow rigid algorithms rooted 

in medical guidelines without modification based on new data. At the other end are 

systems that function with minimal reliance on priors, instead learning primarily through 

exposure to large datasets. Such systems, like neural networks trained on extensive 

patient data, autonomously identify patterns and make predictions based on observed 

correlations and trends. While some level of prior knowledge is essential for any form of 

intelligence, true intelligence is characterized by an ability to operate beyond rigid 

dependence on pre-existing information. Intelligence, therefore, is not merely reflected 

in the capacity to improve at a skill with accumulated experience, but in the system’s 

ability to adapt and generalize beyond specific, learned patterns. 

In addition to priors and experiential knowledge, a third critical factor 

"generalization difficulty", is essential for assessing intelligence. Higher levels of 

generalization difficulty necessitate a correspondingly higher level of intelligence, as 

demonstrated through the successful resolution of tasks that demand adaptive and 

flexible solutions. A key distinction must be made between the intelligent system (IS) 

itself and a skill program, which addresses a particular task within a defined problem 

space. The IS should be capable of generating a skill program that extends beyond the 

specific situations it was trained on, generalizing across a wider array of scenarios within 

the broader situation space. This ability to generalize is not merely a function of 
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increasing training data; rather, it represents a distinct dimension integral to defining 

intelligence. For fair comparisons of generalization difficulty, it is essential to restrict the 

model's embedded knowledge to a foundational set, including core concepts such as 

object permanence, basic physical principles (e.g., cohesion), notions of agency and 

goal-directed behavior, the natural number system, elementary arithmetic, and basic 

topology [6]. In this framework, the intelligence of an IS can be considered a measure of 

its efficiency in acquiring skills across diverse tasks, with respect to its priors, 

accumulated experience, and the inherent challenge of generalization difficulty. 

In the following section, we present a predictive model aimed at assessing the risk 

of developing diabetes. This model might incorporate established priors, such as 

recognized risk factors (e.g., age, family history, obesity). We will evaluate the three 

levels of generalization to determine which approach is most applicable. 

3. Results 

In the context of our predictive model for assessing the risk of developing diabetes, local 

generalization is evident in the model's ability to accurately evaluate known unknowns. 

This includes distinguishing between patients at risk for diabetes and those who are not, 

based on established criteria. For instance, when the model is applied to new patient data, 

it effectively utilizes well-defined risk factors to make reliable predictions. This 

robustness ensures consistent performance across similar scenarios, demonstrating its 

efficacy in identifying individuals who may benefit from preventive interventions 

derived from previously learned patterns. This application exemplifies one of the most 

prevalent use cases of artificial intelligence. Achieving accuracy above a certain 

threshold on test data generally justifies model implementation. The prior knowledge 

and experience are well-defined, and generalization is relatively easy, as no novel 

situations are included in the test data. In such cases, it is essential to ensure the model 

is not overfitted and appropriately reflects the data's complexity. 

Broad generalization is a notable feature of the model’s ability to adapt its risk 

assessment capabilities across diverse patient populations and associated health 

conditions. For instance, the predictive model can be trained not only to evaluate the risk 

of diabetes but also to incorporate comorbidities such as metabolic syndrome and 

cardiovascular disease. By integrating a variety of data inputs – including lifestyle factors 

and socio-demographic information – the model significantly enhances its ability to 

generate nuanced risk profiles. This broader applicability allows healthcare providers to 

identify at-risk individuals across different demographic groups and tailor interventions 

accordingly, ultimately improving patient outcomes in various contexts. However, 

traditional machine learning models such as random forests or boosting are insufficient 

for this level of complexity; they require either an ensemble of methods or a neural 

network based on transformer architectures. In this scenario, the focus extends beyond 

mere accuracy; it necessitates the development of comprehensive metrics that evaluate 

how many new contexts can be addressed. Weighted accuracy alone is inadequate; 

instead, metrics should be designed around concepts such as contextual coverage, 

adaptability, and the balance between exploration and exploitation. 

Extreme generalization in diabetes risk prediction differs from broad generalization 

due to a higher degree of generalization difficulty. This difficulty pertains to the model's 

ability to integrate new and often entirely unknown contexts or risk factors without 

having explicitly encountered them during training. While broad generalization refers to 
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the expansion of knowledge to similar or related domains within a known framework, 

extreme generalization challenges the model to function effectively in completely 

unfamiliar and unforeseen situations. A model capable of extreme generalization must 

be able to recognize unknown patterns and relationships that may lie outside existing 

medical knowledge, such as newly discovered genetic markers or unexpected 

environmental factors not included in standard risk assessments. Hence, the model must 

possess sufficient flexibility to formulate hypotheses and identify patterns based on a 

small core of knowledge in entirely new domains. 

There are no satisfactory measurement methods for such an extreme generalization. 

Chollet proposed the "Abstraction and Reasoning Corpus (ARC)", which, according to 

his assertion, cannot be solved purely through example-based learning [6]. This is where 

we diverge from Chollet's position. General intelligence is not orthogonal to experience. 

Through experience, genetic predispositions are epigenetically modified, resulting in the 

incorporation of knowledge that extends beyond direct experience into the structure of 

intelligence. While Large Language Models (LLMs) have not yet achieved human-level 

intelligence, they exhibit some astonishing emergent properties arising from exposure to 

vast amounts of data. Furthermore, human intelligence itself is never entirely 

independent of prior experiences, as our g factor is a product of ancestral priors and 

experiences. Returning to the measurement problem, we therefore propose utilizing the 

same metrics as those employed for broad generalization but with heightened 

expectations; the specific requirements will depend on the use case. 

Although such advanced systems with general intelligence are not yet fully realized, 

some LLMs have demonstrated capabilities in medical examinations that surpass those 

of many medical students [10]. Additionally, numerous physicians are utilizing these 

systems as aids in their daily practice due to the impressive aggregation of information 

they provide. The challenge of measurement is becoming increasingly urgent, especially 

as we transition from the traditional medical device context, which typically focuses on 

specific, narrowly defined applications. Just as an individual cannot be classified as a 

medical device, a general artificial intelligence (AGI) cannot be treated as one either. 

The fundamental distinction lies in the fact that AGI is not designed for a single 

application, but rather aims for broader, flexible problem-solving abilities across various 

domains. This broad applicability, coupled with the inherent complexity and 

unpredictability of AGI, makes it incompatible with the rigid, narrowly focused 

framework of medical device regulation. 

In conclusion, while traditional metrics may be sufficient for specific applications 

such as local generalization, extreme generalization necessitates the development of new 

evaluation and validation concepts to reliably capture the capabilities of autonomous 

hypothesis formation and adaptation. The integration of AGI into clinical practice thus 

requires the creation of novel metrics and an expanded validation model that transcends 

the conventional framework of medical products, thereby highlighting the full potential 

of generalized AI applications. Currently, we are still far from illuminating this complex 

area, and existing approaches to explainable AI may be destined for failure, as the 

challenge is similar to that of elucidating consciousness, which is not aligned with the 

practical needs in this field. 
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4. Discussion 

In examining the generalization capabilities of predictive models for diabetes risk, we 

observe distinct limitations and potentials at various levels of generalization. Local 

generalization offers a reliable and narrowly defined risk assessment based on 

established factors; it is constrained to predetermined contexts and familiar patient 

profiles. In contrast, broad generalization enhances the model's applicability by 

facilitating risk prediction across diverse populations and associated health conditions. 

This broader level allows for more refined patient stratification and enhanced preventive 

measures. However, it still depends on familiar domains, potentially overlooking novel 

risk factors not considered by the model developers. Often, this is even not intended, as 

the system's reliability was not validated for such unforeseen factors. 

Extreme generalization, which seeks adaptability in unforeseen and complex 

contexts, represents the most ambitious and least understood application, particularly in 

healthcare. The primary challenge lies in equipping a model to identify, hypothesize, and 

integrate new medical insights or environmental changes without prior exposure. This 

level not only complicates generalization but also extends the limits of AI validation 

within current frameworks. While Chollet’s proposal of the ARC provides valuable 

insights for testing, its clinical applicability is limited, highlighting the urgent need for 

new evaluation methodologies specifically designed for dynamic health contexts. To 

advance the field, interdisciplinary collaboration among healthcare professionals, data 

scientists, and ethicists is essential to ensure that emerging risk factors are effectively 

integrated into predictive models. 
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