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Abstract. This study investigated healthcare utilization patterns prior to prostate 

cancer diagnoses, aiming to develop machine learning models for early prediction 
of cancer diagnosis. Data from the All of Us Research Program was used, focusing 

on adult patients diagnosed with prostate cancer between 2010 and 2019. Key 

variables were derived from procedure, measurements, and condition records, 
including PSA values, comorbidity index, and symptoms. Multiple machine 

learning models were tested to predict prostate cancer 3, 6, 9, and 12 months ahead 

of time. The dataset included 1,276 cancer patients and 1,232 non-cancer patients. 
The XGBoost model performed best at 3 months, achieving an accuracy and F1 

score of 0.73 and an AUC of 0.82. At 6 months, the model had an accuracy and F1 

score of 0.71 and an AUC of 0.78. Performance declined with longer prediction 
windows. PSA values were consistently the most important predictor across all 

timeframes, along with other factors like triglyceride and creatinine levels. 
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1. Introduction 

Early cancer detection plays a critical role in improving patient prognosis, as even short 

delays in treatment can significantly increase mortality and limit treatment options, 

especially in high-risk and aggressive cancers. A four-week delay in cancer treatment 

can raise mortality rates by 6-8% for surgery and 9-13% for certain radiotherapies and 

systemic treatments [1]. These risks rise further with delays of eight and twelve weeks, 

emphasizing the importance of early diagnosis and timely treatment. 

Observational studies have highlighted differences in healthcare utilization between 

cancer patients and non-cancer patients. A study using the SEER-Medicare database 

revealed that, in the 12 months before diagnosis, cancer patients had more outpatient 

visits, twice the emergency room admissions, and 10% higher hospitalization rates than 

non-cancer controls [2]. Additionally, healthcare expenditures for cancer patients, 

particularly those with prostate cancer, were significantly higher, with prostate cancer 

patients averaging annual costs over $15,000, largely driven by hospital services and 

ambulatory care visits [3]. 
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In recent years, machine learning (ML) and real-world data (RWD) have 

increasingly been applied to enhance early cancer detection and improve cancer care 

management [4-8]. ML has been used for screening, diagnosis, prognosis, and treatment 

selection. Traditional models like lasso regression and decision trees, along with neural 

networks, have been employed successfully [4]. By analyzing vast datasets, ML models 

can uncover subtle patterns in patient behaviors and healthcare utilization that may not 

be apparent through traditional methods. Such insights can inform personalized care 

strategies, optimize resource allocation, and reduce healthcare costs by identifying 

patients at higher risk earlier. Furthermore, ML has the capacity to integrate complex 

data types—such as electronic health records (EHR), genomic data, and medical notes—

further improving diagnostic accuracy and treatment personalization for conditions like 

prostate cancer. For example, a time-series neural network model achieved high accuracy 

in predicting pancreatic cancer three months before diagnosis [5]. 

Inspired by prior research, this study aimed to explore healthcare utilization patterns 

in the three years before a prostate cancer diagnosis, with the goal of building machine 

learning models for early prostate cancer prediction. 

2. Methods 

The dataset was extracted from the All of Us Research Program [9]. Prostate cancer 

patients were first identified. The inclusion criteria were patients diagnosed with 'primary 

malignant neoplasm of prostate (SNOMED = 93974005) between 2010 and 2019. 

Patients with missing age, gender, or prior cancer diagnoses were excluded. Medical 

activities and lab tests within 3 years prior to diagnosis were gathered, and only patients 

with 2 or more activities were included. A cohort of non-cancer male patients was also 

selected, with an arbitrary prediction date, age-matched to the cancer group. Similarly, 

only non-cancer patients with 2 or more activities were included for comparability. 

Multiple machine learning models were developed to predict whether a patient has 

prostate cancer at various time intervals. Extreme Gradient Boosting (XGBoost) was 

selected as the primary machine learning model due to its superior performance in 

previous studies [10]. XGBoost is an advanced implementation of Gradient Boosted 

Decision Trees (GBDT), using an ensemble learning method that aggregates the 

predictions from multiple decision trees to deliver a more accurate prediction. This 

technique uses the concept of boosting, where a series of decision trees are trained in 

succession. Each tree focuses on the errors or residuals left by its predecessors and seeks 

to minimize these through gradient descent, which will increase the predictive accuracy 

of the ensemble. In addition, other predictive models such as random forest, SVM, and 

neural networks were tested to compare the predictive results. 

Predictive variables were generated by analyzing data from procedures, 

measurements, and condition tables. CPT4-coded procedures were grouped using the 

Clinical Classifications Software (CCS), and surgical procedures were flagged as narrow, 

broad, or neither [11]. Two additional variable sets were created using AAPC criteria 

[12]. The first set focused on evaluation and management services, covering outpatient, 

inpatient, emergency care, and other services. The second set categorized new patient 

visits based on their duration, dividing them into four groups: visits under 30 minutes, 

30-44 minutes, 45-59 minutes, and 60-74 minutes, which provided a more detailed 

breakdown of patient interactions. The number of occurrences within each timeframe 

was calculated, with only categories having more than 5 occurrences included. Lab tests 
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were identified using LOINC codes, grouped into 80 subgroups and 5 parent categories. 

Abnormal lab test results for key markers such as hemoglobin, white blood cell count, 

platelets, AST, ALT, CRP, calcium, and creatinine were tracked, and their frequencies 

calculated. PSA test results were summarized into four key variables: most recent, 

maximum, minimum, and mean difference. Although some variables may be correlated, 

XGBoost is effective at mitigating issues related to highly correlated variables. When 

constructing each individual tree, XGBoost randomly samples a subset of features 

(variables) instead of using all variables. This feature subsampling method reduces the 

likelihood that any single correlated variable dominates the splitting criteria across all 

trees, which reduces the impact of multicollinearity.  

The Charlson comorbidity index was computed for each patient. Genitourinary 

symptoms were captured using ICD codes (R30-R39), with variables created for 

hematuria, urinary retention, and total symptom count. The number of occurrences of 

each variable within the predictive window was calculated for all patients. 

The target variable was binary, indicating a positive cancer diagnosis. Four 

predictive datasets were constructed for 3, 6, 9, and 12 months before diagnosis, based 

on medical activities within specific timeframes. For the 3-month prediction, activities 

from 4 to 15 months prior to diagnosis were analyzed, while for the 6-, 9-, and 12-month 

predictions, data from the respective 12 months prior to each prediction window were 

used. The dataset was split into 70% for training and 30% for testing. Parameter tuning 

and 5-fold cross-validation were performed to optimize the models. Evaluation metrics 

included accuracy, F1 score, and ROC AUC score. The best models for each timeframe 

were then applied to the testing set, and their performance was assessed. All analyses 

were conducted in Python 3.8 within Anaconda Jupyter Notebook. 

Table 1. Demographics of cancer and non-cancer patients. 

 

Cancer 

(n = 1276)  

Non-Cancer 

(n = 1232)  

 Mean Std Mean Std 

Age 66.67 8.03 65.67 10.59 

Comorbidity Index 3.46 2.11 3.87 2.61 

 Count Percent Count Percent 

Race     

White 1005 78.76% 927 75.24% 

Black 235 18.42% 231 18.75% 

Other 36 2.82% 74 6.01% 

3. Results 

There were 1276 prostate cancer patients and 1232 non-cancer patients in the analytic 

dataset. These patients generated over 78,000 procedure records, over 500,000 

measurement records, and 250,000 condition records. The average age of these patients 

was 66.67 (±8.03) years old, which was similar to that of the non-cancer patients 

(65.57±10.59). The average comorbidity index at the prediction date for the cancer group 

was 3.46±2.11, whereas the comorbidity index for the non-cancer group was 3.87±2.61. 

In terms of race, the majority of patients in both groups were White: 78% in the cancer 
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group and 75% in the non-cancer group. And around 18% of patients were black or 

African American in both groups. In addition, all patient's genders were male. 

In machine learning, XGBoost was the best-performing model as it showed 

consistently high performance across all timeframes and the fastest training time. Table 

2 shows the performance of the XGBoost model in predicting prostate cancer at different 

time intervals before diagnosis (3, 6, 9, and 12 months ahead). The model's accuracy, F1 

score, and AUC values declined as the predictive timeframe increased. For predictions 

made 3 months before diagnosis, the model achieved its best performance with an 

accuracy of 0.73, F1 score of 0.73, and AUC of 0.82. At 6 months ahead, the performance 

decreased slightly, with an accuracy of 0.71, F1 score of 0.71, and AUC of 0.78. For 

predictions 9 months before diagnosis, the accuracy and F1 score dropped to 0.66, and 

the AUC fell to 0.73. At 12 months ahead, the model's performance was the lowest, with 

an accuracy of 0.67, F1 score of 0.68, and AUC of 0.71. 

Table 2. XGBoost model performances for all timeframes. 

Time Periods Accuracy F1 AUC 

3 months ahead 0.73 0.73 0.82 

6 months ahead 0.71 0.71 0.78 

9 months ahead 0.66 0.66 0.73 

12 months ahead 0.67 0.68 0.71 

We further analyzed the important variables generated by the XGBoost model. 

Across all timeframes, PSA test values, both the most recent and maximum PSA values, 

were consistently ranked as the most important variables. In the 3- and 6-month windows, 

other significant factors include routine chest X-rays, levels of sodium, urea nitrogen, 

and various lab measurements (e.g., creatinine, triglycerides, calcium). At the 9- and 12-

month intervals, PSA values remained key predictors, but other variables such as 

epithelial cell presence in urine, nonoperative urinary system measurements, and blood 

levels of bicarbonate, phosphate, and creatinine showed importance. 

4. Discussion 

The study focused on predicting prostate cancer diagnoses using machine learning 

models, with the best performance seen 3 months before diagnosis (accuracy and F1 

score of 0.73, AUC of 0.82). Performance decreased as the prediction window increased, 

with 6-month predictions also showing promise (accuracy 0.71, AUC 0.78). 

The demographics of both cancer and non-cancer patients showed that they were 

older adults with several underlying health conditions. PSA values consistently emerged 

as key predictors across all timeframes, along with variables like triglyceride, sodium, 

creatinine, and routine chest X-rays. These findings showed the importance of both 

cancer-specific biomarkers and broader health indicators. Our results corroborate 

previous reports demonstrating the potential value of EHR and RWD for precision 

medicine [13-15] and the generation of real-world evidence [16-18]. The study had 

limitations, such as not using time series analysis and lacking symptoms and detailed 

medical history. Future research will explore time series modeling, additional coding 

systems, and medication information. In addition, we will use large language models to 

extract symptoms and other useful healthcare utilization patterns from unstructured notes 

to improve prediction accuracy further. 
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5. Conclusion 

In conclusion, this study showed the potential of machine learning to monitor healthcare 

utilization patterns and enhance early detection of prostate cancer. The models predicting 

cancer 3 and 6 months ahead showed good performance. This showed the value of 

predictive tools in improving diagnostic efficiency and patient care. A major opportunity 

for enhancing these models is to integrate large language models (LLMs). By 

incorporating LLMs, future models could analyze unstructured medical data, such as 

clinical notes and physician narratives, which often contain vital information unavailable 

in structured datasets. This would enable a more comprehensive understanding of patient 

symptoms, family history, race, and other risk factors, uncovering hidden patterns and 

improving the models' predictive power. LLMs could also enhance feature extraction, 

making the models more sensitive to subtle indicators of disease progression. Thus, 

additional research using LLMs is warranted. 
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