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Abstract. This study leverages the DCTPep database, a comprehensive repository 
of cancer therapy peptides, to explore the application of machine learning in 

accelerating cancer research. We applied Principal Component Analysis (PCA) and 

K-means clustering to categorize cancer therapy peptides based on their 
physicochemical properties. Our analysis identified three distinct clusters, each 

characterized by unique features such as sequence length, isoelectric point (pI), net 

charge, and mass. These findings provide valuable insights into the key properties 
that influence peptide efficacy, offering a foundation for the design of new 

therapeutic peptides. Future work will focus on experimental validation and the 

integration of additional data sources to refine the clustering and enhance the 
predictive power of the model, ultimately contributing to the development of more 

effective peptide-based cancer treatments. 
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1. Introduction and Background 

Treating cancer remains one of the most significant challenges in medical and biomedical 

research fields, globally, necessitating continuous advancements in therapeutic 

approaches. Traditional treatments such as chemotherapy, radiation, and surgery often 

come with severe side effects and limitations in targeting specificity [1]. In recent years, 

peptides have emerged as promising therapeutic agents due to their high specificity, 

efficacy, and relatively low toxicity [2]. Peptides can interact with proteins and other 

macromolecules, playing crucial roles in various cellular functions such as cell signaling 

and immune modulation. Studies have reported that 15-40% of all protein-protein 

interactions in human cells are mediated by peptides [3]. As a result, these short chains 

of about 2-50 amino acids long, linked by peptide bonds, can disrupt specific molecular 

pathways involved in cancer progression, offering improved tumor penetration and lower 

immunogenicity, compared to conventional drugs [3]. Peptides, are used to deliver 

carriers and therapeutic cargoes to tumors and form peptide-drug conjugates (PDCs), 

enhancing both delivery and efficacy [4]. They selectively bind to cell surface receptors 

and intracellular proteins, blocking activity or disrupting interactions. This 

multifunctionality makes peptides highly promising for cancer therapy [3]. 

The development of peptide-based therapies relies heavily on comprehensive 

datasets, detailing peptide sequences, structures, and biological activities. Datasets 

provided by Mendeley Data, PeptideAtlas, MassIVE, etc. are available for download as 

well as for online browsing of submitted identifications. In this study, we used the 

DCTPep (Data of cancer therapy peptides), an open data repository of cancer therapy 

peptides, composed of two sub-libraries: Peptide Library and Drug Library. It has been 

developed to provide scientists with the information for designing new anticancer 

peptides and targeted peptide-conjugated anticancer agents with a high selectivity. The 

DCTPep database is an invaluable resource, providing extensive information on cancer 

therapy peptides, including their physicochemical properties and structural annotations 

[5]. 

In biomedical research, machine learning techniques are increasingly used to 

analyze large datasets and uncover patterns that traditional methods might miss [6]. 

Machine learning techniques enable highly accurate data modeling without relying on 

strong assumptions about the system being modeled. It often outperforms biomedical 

models in data description, offering both practical engineering solutions and a crucial 

benchmark. These techniques are particularly valuable in peptide research for predicting 

peptide activity, classifying peptides, and identifying key therapeutic features [7].  

Principal Component Analysis (PCA) is a statistical method that reduces data 

dimensionality while preserving essential variance, aiding in visualization and pattern 

identification [8]. K-means clustering is a widely used unsupervised machine learning 

algorithm designed to partition a dataset into a specified number of clusters [9]. Its 

objective is to group similar data points together, thereby uncovering underlying patterns 

or structures within the data. When combined with K-means clustering, PCA can 

categorize peptides based on their physicochemical properties, highlighting 

characteristics that influence their biological activity. Applying these advanced 

techniques to the DCTPep dataset can significantly accelerate the discovery and 

optimization of cancer therapy peptides. By identifying natural groupings and key 

differentiating features, researchers can streamline the peptide design process and 

prioritize those with the highest therapeutic potential [10]. This paper aims to leverage 

machine learning, specifically PCA and K-means clustering, to analyze the DCTPep 
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dataset, identify meaningful patterns, and enhance our understanding of the correlation 

between peptide properties and their therapeutic dynamic. 

2. Materials and Methods 

This study leverages the DCTPep database to explore the effectiveness of machine-

learning techniques in selecting the most effective peptides for cancer treatment. 

Considering that peptide functionality is determined by three parameters—the identity 

of amino acids, the sequence of amino acids, and the shape of the peptide—DCTPep is 

an ideal resource for specific analysis [5]. Initially, the dataset contained several entries 

labeled as 'Not available' or 'Not Applicable,' which were replaced with NaN (Not a 

Number) to facilitate numerical analysis. Relevant numeric features were identified, 

including Sequence Length, isoelectric point (pI), Net Charge, Mass, Boman Index, and 

Aliphatic Index, crucial physicochemical features for supporting drug development and 

ongoing quality control. To handle missing values in the dataset, mean imputation was 

employed, wherein missing values were replaced with the mean of the respective feature. 

This approach ensures that the imputed values are within the range of observed data, 

maintaining the dataset's integrity [11]. Subsequently, the data was standardized using 

StandardScaler to ensure that all features contribute equally to the analysis [12].  Python 

was utilized as the programming language for data analysis, employing libraries such as 

pandas for data manipulation, scikit-learn for machine learning algorithms, and 

Matplotlib and Seaborn for data visualization [13]. 

Principal Component Analysis (PCA) was applied to reduce the dimensionality of 

the dataset while retaining the most significant variance. This step aids in simplifying the 

complex dataset, making it easier to visualize and identify patterns. PCA reduced the 

data to two principal components, which were then used for clustering analysis [8]. 

K-means clustering was employed to categorize the peptides based on the PCA-

transformed data. The algorithm partitions the data into k-clusters, where each data point 

belongs to the cluster with the nearest mean value [9]. In this study, three clusters were 

identified, providing a clear segmentation of the peptides based on their physicochemical 

properties [14].  

3. Results 

The PCA reduced the DCTPep dataset to two principal components, capturing 

approximately 72.5% of the variance. This high percentage indicates that the majority of 

the information contained in the original high-dimensional dataset is preserved in these 

two components [8]. The scatter plot (Figure 1) illustrates the distribution of cancer 

therapy peptides in the reduced two-dimensional PCA space. Each point represents a 

peptide, colored according to its assigned cluster by the K-means algorithm (Cluster 0 in 

purple, Cluster 1 in teal, and Cluster 2 in yellow). Table 1 shows cluster 0 includes 

peptides with moderate sequence length, higher pI, and net charge. These properties 

suggest that the peptides have stronger interactions with negatively charged cell 

membranes, potentially influencing their efficacy and specificity [3]. Cluster 1 contains 

peptides with the longest sequence, highest mass, and a low Boman Index. These 

peptides which might have reduced off-target effects and improved stability, could be 

suitable for specific targeting [2]. Cluster 2 consists of the shortest peptides, 
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characterized by lower pI and net charge, and the highest affinity. These peptides may 

be highly effective in binding to their targets, contributing to their rapid penetration and 

action within target cells [4].  

Our clustering results align well with the annotations in DCTPep, validating the 

effectiveness of our machine-learning approach. Peptides in Cluster 2, for instance, show 

high affinity and specific physicochemical properties consistent with known high-

efficacy peptides in the database [5]. This analysis not only confirms existing knowledge 

but also provides a framework for discovering new insights and guiding future peptide 

design and development efforts [10]. 

 
Figure 1. Principal Component Analysis (PCA) Results with K-means Clustering 

Table 1. Cluster Summary Statistics 

Cl
ust
er 

Seque
nce_Le

ngth 

pI Net_ 
char
ge 

Mass Boman_ 
Index 

Aliphatic
_ Index 

Affinity PCA
1 

PCA
2 

0 16.95 11.77 5.65 230342.31 -3820.23 84.87 62.32 0.59 -0.90 
1 31.93 8.31 3.02 421543.48 -8710.33 58.45 61.31 1.93 1.50 

2 10.84 7.01 0.31 129484.38 -220.13 98.78 63.23 -1.60 0.33 

4. Discussion and Conclusions 

The application of PCA and K-means clustering has enabled us to categorize cancer 

therapy peptides into three distinct clusters based on their physicochemical properties, 

providing valuable insights into the key features that influence peptide efficacy and 

guiding the design of new therapeutic peptides. By reducing the dimensionality of the 

dataset, PCA helps in visualizing complex relationships between different peptide 

properties, while K-means clustering identifies natural groupings within the data [8].  

Understanding the physicochemical properties that differentiate effective peptides 

from less effective ones can significantly inform the development of new peptides with 

enhanced therapeutic potential. Our findings suggest that specific characteristics, such 

as sequence length and net charge, are critical for peptide activity. Peptides in Cluster 1, 

characterized by the longest sequences, might be designed for stability and targeted 

delivery, which are important for maintaining therapeutic efficacy [2]. Peptides with 

higher net charges (Cluster 0) might interact more effectively with negatively charged 
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cell membranes, enhancing their ability to penetrate cells and exert their therapeutic 

effects [3]. The high affinity and specific mass properties in Cluster 2 suggest that these 

peptides are optimized for rapid and specific interactions with their targets, which is 

crucial for effective cancer therapy [4]. These insights can help in tailoring peptide 

sequences to enhance their binding affinity, stability, and overall therapeutic efficacy, 

ultimately leading to more effective cancer treatments. However, there are some 

limitations in this study. The dataset used has inherent limitations due to missing values 

and potential biases in the data sources. The use of mean imputation for missing values 

may not fully capture the true variability in the data. Additionally, the findings from this 

study may not generalize well to other datasets or peptide types without further validation. 

Future research should focus on validating these findings through experimental studies 

and integrating additional data sources to refine clustering and enhance model accuracy 

[10]. Conducting in vitro and in vivo experiments to test the efficacy and specificity of 

peptides from different clusters can validate the predictive power of the PCA and 

clustering models. Including additional datasets, such as peptide-drug conjugates and 

predicted 3D structures, can provide a more comprehensive view of peptide properties 

and improve model accuracy. Using advanced machine learning techniques and 

integrating multi-omics data can further enhance the understanding of the relationships 

between peptide properties and their therapeutic potential. By continuing to refine these 

models and integrating more data, researchers can develop more accurate and effective 

peptide-based therapies for cancer treatment. 
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