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Introduction. Secure Multi-Party Computation (SMPC) offers a powerful tool for 
collaborative healthcare research while preserving patient data privacy. State of the 
art. However, existing SMPC frameworks often require separate executions for 
each desired computation and measurement period, limiting user flexibility. 
Concept. This research explores the potential of a client-driven metaprotocol for the 
Federated Secure Computing (FSC) framework and its SImple Multiparty 
ComputatiON (SIMON) protocol as a step towards more flexible SMPC solutions. 
Implementation. This client-driven metaprotocol empowers users to specify and 
execute multiple calculations across diverse measurement periods within a single 
client-side code execution. This eliminates the need for repeated code executions 
and streamlines the analysis process. The metaprotocol offers a user-friendly 
interface, enabling researchers with limited cryptography expertise to leverage the 
power of SMPC for complex healthcare analyses. Lessons learned. We evaluate 
the performance of the client-driven metaprotocol against a baseline iterative 
approach. Our evaluation demonstrates performance improvements compared to 
traditional iterative approaches, making this metaprotocol a valuable tool for 
advancing secure and efficient collaborative healthcare research. 

Keywords. Medical Research, Cryptography, Health Information Exchange, 
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1. Introduction 

Extracting valuable insights from large and diverse healthcare datasets is crucial for 
advancing medical research and improving patient care. However, strict data privacy 
regulations such as the General Data Protection Regulation (GDPR) often restrict data 
sharing, hindering comprehensive analysis. Besides Federated Machine Learning, 
Secure Multi-Party Computation (SMPC) [1,2] emerges as a promising solution, 
enabling collaborative analysis of sensitive healthcare data while preserving data privacy 
at its source.  

SMPC enables multiple institutions to collaboratively analyze sensitive healthcare 
data while keeping the data decentralized at each location. This approach facilitates the 
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extraction of valuable insights from large datasets without compromising patient privacy, 
improving healthcare research and collaboration. However, SMPC often involves rather 
complex tech stacks and difficult implementations. Also, the universality of most SMPC 
solutions incurs a heavy penalty in the runtime complexity and networking overhead.  

In this work, we address some of these difficulties by proposing a novel client-driven 
metaprotocol for Federated Secure Computing [3] (FSC; see section 2.2 for details), a 
simple and lightweight SMPC system optimal for medical use cases. This metaprotocol 
aims to provide a more flexible and generalizable interface to FSC in healthcare research 
in cases with the following requirements: 

• Execute multiple atomic operations within a single run. 
• Analyze data across different measurement periods: The metaprotocol will 

accommodate data from various timeframes, such as April, March 2024, etc. 
• Utilize various calculation methods: The system will be adaptable to different 

analytical approaches, such as calculating medians, sums, and other metrics. 

2. Background 

2.1. Related Work 

There are different frameworks offering solutions to facilitate privacy-preserving 
computation between organizations (for non-cryptographic experts). DataSHIELD [4] is 
a framework developed to jointly compute summary statistics. The computation relies 
on exchanging only summary parameters between participating parties while the 
individual-level data remains private at its origin site. 

Sharemind MPC [5] is a commercial industry-grade solution for Secure Multiparty 
Computation. Input data is secretly shared across compute nodes. Arbitrary computations 
may then be performed in a peer-to-peer network through bytecode compiled from the 
domain specific SecreC language [6]. Pre-built statistical analysis is also available from 
Rmind, an R-style scripting language. 

The MP-SPDZ [7] framework is a fork of the SPDZ-2 implementation of the SPDZ 
MPC protocol containing a wide range of different security models and multi-party 
protocols, which are accessible through a Python interface. The focus is on providing a 
research platform to benchmark different MPC protocols. Particularly, MP-SPDZ has 
been applied in ML for secure inference and training of complex (neural network) models.  

While MP-SPDZ and Sharemind MPC aim to provide a comprehensive solution, the 
goal of EasySMPC [8] is to make SMPC protocols easily accessible for non-
cryptographers. EasySMPC is a privacy preserving SMPC framework focusing on 
usability and ease of access for non-technical personal. The framework offers desktop 
application with a graphical user interface to set up the computation. The communication 
between participating parties is executed automatically via e-mail. The underlying 
SMPC method for this software is Arithmetic Secret Sharing [1]. Currently, EasySMPC 
offers the secure computation of a sum as its only available calculation method. 
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2.2. Federated Secure Computing 

Federated Secure Computing (FSC) [3] is an initiative and middleware that aims to 
provide access to Privacy-Preserving Computation (PPC) for a wider range of users. The 
key innovation of FSC lies in its architectural design. By separating the complexities of 
cryptographic protocols from the user's business logic, FSC makes it easier for users to 
leverage secure computing techniques without requiring in-depth knowledge of 
cryptography. 

FSC incorporates a propaedeutic Simple Multiparty Computation protocol 
(SIMON) that provides various commonly used SMPC algorithms as microservices 
within the FSC framework. These algorithms include secure sum, secure median, matrix 
multiplication univariate and bivariate statistics, and more.  
FSC aims to offer a standardized interface for federated analyses.  

The core architectural principle of FSC is the separation of tasks between clients and 
servers. FSC offers flexibility in its client-server topologies, supporting configurations 
ranging from symmetric peer-to-peer networks to centralized client-server structures. For 
the propaedeutic framework SIMON, each client has its own server. Within the client-
server architecture, servers function as compute nodes, executing the designated 
protocols. Conversely, clients act as both data and researcher nodes, supplying input data, 
dictating control flow, and receiving the processed results. 

The server-side architecture of FSC handles secure computation, data processing, 
and secure communication with clients. The main mechanisms are registry, discovery, 
and the bus. Servers host microservices, that provide microprotocols like secure sum, 
matrix multiplication, and statistical calculations. The server-side implementation is built 
in Python. 

The client-side architecture prioritizes lean design and interacts with server-side 
components via an API. The lightweight client-side software is available in different 
programming languages. Figure 1 shows the main snippet of the client-side code 
including a for loop to run multiple calculations within a single execution unit. A more 
detailed description can be found in [3]. The code is available online2. 

 

 
Figure 1. The client takes as input a single number and specifically calls the microprotocol for the computation 
of a secure sum. 
 

 
2Source Code of FSC: https://github.com/federatedsecure (accessed: 2024-04-30) 
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Summing up, FSC is a framework that is particularly suited for propaedeutic 
application and medical research. Here, universality is sacrificed for simpler 
development and faster execution. The architecture provides all secure computing 
functionality as lean premade microservices through an OpenAPI interface. A 
disadvantage is that only a set of fixed, pre-built microservices are available to the user. 

3. Metaprotocol 

Current implementations of FSC/SIMON client software often rely on calling the API 
multiple times for smaller computation blocks. This requires multiple clients to identify 
subtasks with multiple UUIDs, requiring additional client-client communication. 

To address this limitation and enable efficient execution of sequences of 
computations involving multiple variables and metrics, we propose a novel client-driven 
metaprotocol. This metaprotocol acts as a higher-level abstraction, encapsulating a 
variable number of microprotocols within a single execution unit of client-side code. The 
entire sequence of computations is encapsulated into a single operation. In Python it uses 
an array of dictionaries including the concept name and measurement start and end time 
(e.g. total number of admissions in a hospital for a certain timeframe define by a start 
and end time), which is used to load data entry with the same name from a database 
(Table 1). The method item is used to define the atomic operation provided by FSC. The 
utilized input format is illustrated in Figure 2. 

 
Table 1. This table demonstrates a sample format. "Exchange_date" indicates the date of the computation, 
"Measurement_date" reflects the measurement time. "Concept_id" references the measured concept, 
"Value_numeric" holds the value, and "Target_id" identifies input (0) or result (1). 

id Exchange_date Measurement_date Concept_id Value_numeric Target_id 
001  2024-03-12T13:37:59 42 37 0 
003 2024-06-21T13:49:59 2024-01-20T09:49:52 42 120 1 

 
 

Figure 2. This is the shared input format, which is used by all participating clients to use their data for joint 
calculations. "measurement_start" and "measurement_stop" define a time window for retrieving data entries. 
Only entries where the "measurement_date" falls within this window are retrieved.  
 

The modified client-side code is shown in Figure 3. In addition, instead of 
directly calling individual microprotocols (e.g., “SecureSum”) in a sequential manner on 
the client side, the metaprotocol passes the number and methods of calculations on to the 
server to handle it. 
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Figure 3. The client uses a new metaprotocol which calls the microprotocols defined in the shared input and 
takes the number of metrics to be calculated as an input argument. This code describes the extension of the 
code described for atomic operations in Figure 1. 
 

3.1. Performance Evaluation 

To evaluate the performance improvement of the proposed metaprotocol, we compared 
its execution time against a baseline iterative approach that mimics the standard method 
of executing individual microprotocols sequentially for each variable. The experimental 
setup involved four participants, each consisting of a client, server, and database 
encapsulated in individual Docker containers. The evaluation involved 200 runs, each 
consisting of a mixed workload with 10 computations: 5 executions of the Secure Sum 
microprotocol and 5 executions of the Statistics Frequency microprotocol (calculating 
the mode, i.e. the most frequent value, and the histogram of the distribution of the input 
values). During implementation and evaluation, we identified an issue with the iterative 
baseline where clients were no longer synchronized on the current task after a certain 
amount of time: The computation process typically involves a designated "distributor 
client" responsible for initiating a round of calculations and broadcasting a task definition 
including a unique task identifier (ID). Subsequent clients passively wait for any task ID 
broadcast. However, if a previous task ID exists from a prior round of calculations, 
waiting clients might only receive this outdated task ID and proceed with the associated 
computation. Once the new, relevant task ID is broadcasted, no clients remain in a 
waiting state as they have already processed the outdated ID. This results in a mismatch 
of task IDs, leaving the subsequent computations incomplete as the clients are out of 
sync. To avoid this discrepancy between the task definitions, a pause of 0.12 seconds had 
to be introduced after each calculation. Additionally, a 2-second sleep time was 
implemented between each run for both approaches. 

4. Results 

Table 2 shows the results of the performance evaluation of the metaprotocol. The overall 
average execution per run time for all clients combined is 6.894s with the new client-
driven metaprotocol compared to 7.552s in the baseline iterative approach. With the new 
client-driven metaprotocol the average execution time ranged between 6.395s ± 0.396s 
and 7.393s ± 0.155s. Using an iterative approach without the metaprotocol, the average 
execution time is between 6.806s ± 0.114 and 7.801s ± 0.12.  
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Table 2. The results of the performance evaluation are reported per client as the mean time in seconds over 
200 runs and the standard deviation. The row Iterative approach (ideal) refers to the iterative approach when 
accounted for the mandatory sleep time in between iterations. 

 Client 1 Client 2 Client 3 Client 4 
Metaprotoc
ol 

7.393 ± 0.155 7.391 ± 0.396 6.395 ± 0.397 6.395 ± 0.396 

Iterative 
approach 

7.800 ± 0.141 7.801 ± 0.12 7.800 ± 0.139 6.806 ± 0.114 

Iterative 
approach 
(ideal) 

7.680 ± 0.142 7.682 ± 0.12 7.681 ±0.139 6.687 ± 0.115  

5. Discussion 

In this work, we were able to show the viability of a simplified metaprotocol enabling 
the calculation of multiple different operations (e.g. a secure median) for different time 
periods on a network of multiple participants. This protocol is easier to use on the client 
side compared to the original implementation, and slightly faster compared to an iterative 
approach. 

This work was necessary because FSC/SIMON generally reduces more complex 
calculations to simpler ones. For example, univariate or bivariate statistics are composed 
of several secure sum computations. And the secure median implementation even creates 
‘pipelines’ dynamically. The SIMON implementation specifically provides language 
construct to start pipelines iteratively and collect their intermediate results in 
accumulators. 

However, this functionality is strictly server-side. If the user needed to do a complex 
calculation that was composed of many small microservices, they would have to do so 
in client code. This has two shortcomings: First, the complexity is kept client-side rather 
than offloaded to the server, which is against the FSC design philosophy. Second, many 
small calls to the API cause an excessive networking overhead. 

In this solution, we have shown how to implement a metaprotocol that is client-
driven (i.e. the user can upload their complex data in one go) and then distribute the 
computational tasks to the server side. In this way, the client code is kept clean and 
simple to the user, e.g., a data scientist. 

The results of the performance evaluation show an advantage over the iterative 
approach even when the required sleep time has been accounted for. A more important 
advantage of the metaprotocol is its ability to prevent task desynchronization among 
participating clients. 

Next steps in the further development of a more flexible SMPC service involve a 
dynamic exception handling that allows clients to suspend their participation for several 
rounds if they are unable to provide the agreed-on input and resume their participation if 
they have the required input data for a computation. 

6. Conclusion 

We developed and evaluated a client-driven metaprotocol for SMPC that outperforms 
the traditional iterative approach. Our metaprotocol: 
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• Offers a solution to execute multiple atomic operations with different 
mathematical operations over various measurement periods 
• Achieves an overall average execution time of 6.894s, compared to 7.552s for 
the iterative approach 
• Prevents task desynchronization among participating clients 
• Offloads computational complexity to the server-side, simplifying client code 
and reducing networking overhead. 
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