

Simplifying Multiparty Computation:
A Client-Driven Metaprotocol for

Federated Secure Computing
Johanna Schwinna,1, Hendrik Ballhausenb, Seyedmostafa Sheikhalishahi a, Matthaeus

Morhart a, Mathias Kaspara, and Ludwig Christian Hinske
a

a Digital Medicine, University Hospital of Augsburg, Augsburg, Germany
b

 Department of Radiation Oncology, LMU University Hospital, LMU Munich
ORCiD ID: Johanna Schwinn, https://orcid.org/0009-0000-3107-1619

Introduction. Secure Multi-Party Computation (SMPC) offers a powerful tool for
collaborative healthcare research while preserving patient data privacy. State of the
art. However, existing SMPC frameworks often require separate executions for
each desired computation and measurement period, limiting user flexibility.
Concept. This research explores the potential of a client-driven metaprotocol for the
Federated Secure Computing (FSC) framework and its SImple Multiparty
ComputatiON (SIMON) protocol as a step towards more flexible SMPC solutions.
Implementation. This client-driven metaprotocol empowers users to specify and
execute multiple calculations across diverse measurement periods within a single
client-side code execution. This eliminates the need for repeated code executions
and streamlines the analysis process. The metaprotocol offers a user-friendly
interface, enabling researchers with limited cryptography expertise to leverage the
power of SMPC for complex healthcare analyses. Lessons learned. We evaluate
the performance of the client-driven metaprotocol against a baseline iterative
approach. Our evaluation demonstrates performance improvements compared to
traditional iterative approaches, making this metaprotocol a valuable tool for
advancing secure and efficient collaborative healthcare research.

Keywords. Medical Research, Cryptography, Health Information Exchange,
Confidentiality

1. Introduction

Extracting valuable insights from large and diverse healthcare datasets is crucial for
advancing medical research and improving patient care. However, strict data privacy
regulations such as the General Data Protection Regulation (GDPR) often restrict data
sharing, hindering comprehensive analysis. Besides Federated Machine Learning,
Secure Multi-Party Computation (SMPC) [1,2] emerges as a promising solution,
enabling collaborative analysis of sensitive healthcare data while preserving data privacy
at its source.

SMPC enables multiple institutions to collaboratively analyze sensitive healthcare
data while keeping the data decentralized at each location. This approach facilitates the

1 Johanna Schwinn, Digital Medicine, University Hospital Augsburg, Stenglinstraße 2, Augsburg,

Germany; E-mail: Johanna.schwinn@uk-augsburg.de

German Medical Data Sciences 2024
R. Röhrig et al. (Eds.)
© 2024 The Authors.

This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/SHTI240863

244

extraction of valuable insights from large datasets without compromising patient privacy,
improving healthcare research and collaboration. However, SMPC often involves rather
complex tech stacks and difficult implementations. Also, the universality of most SMPC
solutions incurs a heavy penalty in the runtime complexity and networking overhead.

In this work, we address some of these difficulties by proposing a novel client-driven
metaprotocol for Federated Secure Computing [3] (FSC; see section 2.2 for details), a
simple and lightweight SMPC system optimal for medical use cases. This metaprotocol
aims to provide a more flexible and generalizable interface to FSC in healthcare research
in cases with the following requirements:

• Execute multiple atomic operations within a single run.
• Analyze data across different measurement periods: The metaprotocol will

accommodate data from various timeframes, such as April, March 2024, etc.
• Utilize various calculation methods: The system will be adaptable to different

analytical approaches, such as calculating medians, sums, and other metrics.

2. Background

2.1. Related Work

There are different frameworks offering solutions to facilitate privacy-preserving
computation between organizations (for non-cryptographic experts). DataSHIELD [4] is
a framework developed to jointly compute summary statistics. The computation relies
on exchanging only summary parameters between participating parties while the
individual-level data remains private at its origin site.

Sharemind MPC [5] is a commercial industry-grade solution for Secure Multiparty
Computation. Input data is secretly shared across compute nodes. Arbitrary computations
may then be performed in a peer-to-peer network through bytecode compiled from the
domain specific SecreC language [6]. Pre-built statistical analysis is also available from
Rmind, an R-style scripting language.

The MP-SPDZ [7] framework is a fork of the SPDZ-2 implementation of the SPDZ
MPC protocol containing a wide range of different security models and multi-party
protocols, which are accessible through a Python interface. The focus is on providing a
research platform to benchmark different MPC protocols. Particularly, MP-SPDZ has
been applied in ML for secure inference and training of complex (neural network) models.

While MP-SPDZ and Sharemind MPC aim to provide a comprehensive solution, the
goal of EasySMPC [8] is to make SMPC protocols easily accessible for non-
cryptographers. EasySMPC is a privacy preserving SMPC framework focusing on
usability and ease of access for non-technical personal. The framework offers desktop
application with a graphical user interface to set up the computation. The communication
between participating parties is executed automatically via e-mail. The underlying
SMPC method for this software is Arithmetic Secret Sharing [1]. Currently, EasySMPC
offers the secure computation of a sum as its only available calculation method.

J. Schwinn et al. / Simplifying Multiparty Computation: A Client-Driven Metaprotocol 245

2.2. Federated Secure Computing

Federated Secure Computing (FSC) [3] is an initiative and middleware that aims to
provide access to Privacy-Preserving Computation (PPC) for a wider range of users. The
key innovation of FSC lies in its architectural design. By separating the complexities of
cryptographic protocols from the user's business logic, FSC makes it easier for users to
leverage secure computing techniques without requiring in-depth knowledge of
cryptography.

FSC incorporates a propaedeutic Simple Multiparty Computation protocol
(SIMON) that provides various commonly used SMPC algorithms as microservices
within the FSC framework. These algorithms include secure sum, secure median, matrix
multiplication univariate and bivariate statistics, and more.
FSC aims to offer a standardized interface for federated analyses.

The core architectural principle of FSC is the separation of tasks between clients and
servers. FSC offers flexibility in its client-server topologies, supporting configurations
ranging from symmetric peer-to-peer networks to centralized client-server structures. For
the propaedeutic framework SIMON, each client has its own server. Within the client-
server architecture, servers function as compute nodes, executing the designated
protocols. Conversely, clients act as both data and researcher nodes, supplying input data,
dictating control flow, and receiving the processed results.

The server-side architecture of FSC handles secure computation, data processing,
and secure communication with clients. The main mechanisms are registry, discovery,
and the bus. Servers host microservices, that provide microprotocols like secure sum,
matrix multiplication, and statistical calculations. The server-side implementation is built
in Python.

The client-side architecture prioritizes lean design and interacts with server-side
components via an API. The lightweight client-side software is available in different
programming languages. Figure 1 shows the main snippet of the client-side code
including a for loop to run multiple calculations within a single execution unit. A more
detailed description can be found in [3]. The code is available online2.

Figure 1. The client takes as input a single number and specifically calls the microprotocol for the computation
of a secure sum.

2Source Code of FSC: https://github.com/federatedsecure (accessed: 2024-04-30)

J. Schwinn et al. / Simplifying Multiparty Computation: A Client-Driven Metaprotocol246

Summing up, FSC is a framework that is particularly suited for propaedeutic
application and medical research. Here, universality is sacrificed for simpler
development and faster execution. The architecture provides all secure computing
functionality as lean premade microservices through an OpenAPI interface. A
disadvantage is that only a set of fixed, pre-built microservices are available to the user.

3. Metaprotocol

Current implementations of FSC/SIMON client software often rely on calling the API
multiple times for smaller computation blocks. This requires multiple clients to identify
subtasks with multiple UUIDs, requiring additional client-client communication.

To address this limitation and enable efficient execution of sequences of
computations involving multiple variables and metrics, we propose a novel client-driven
metaprotocol. This metaprotocol acts as a higher-level abstraction, encapsulating a
variable number of microprotocols within a single execution unit of client-side code. The
entire sequence of computations is encapsulated into a single operation. In Python it uses
an array of dictionaries including the concept name and measurement start and end time
(e.g. total number of admissions in a hospital for a certain timeframe define by a start
and end time), which is used to load data entry with the same name from a database
(Table 1). The method item is used to define the atomic operation provided by FSC. The
utilized input format is illustrated in Figure 2.

Table 1. This table demonstrates a sample format. "Exchange_date" indicates the date of the computation,
"Measurement_date" reflects the measurement time. "Concept_id" references the measured concept,
"Value_numeric" holds the value, and "Target_id" identifies input (0) or result (1).

id Exchange_date Measurement_date Concept_id Value_numeric Target_id
001 2024-03-12T13:37:59 42 37 0
003 2024-06-21T13:49:59 2024-01-20T09:49:52 42 120 1

Figure 2. This is the shared input format, which is used by all participating clients to use their data for joint
calculations. "measurement_start" and "measurement_stop" define a time window for retrieving data entries.
Only entries where the "measurement_date" falls within this window are retrieved.

The modified client-side code is shown in Figure 3. In addition, instead of
directly calling individual microprotocols (e.g., “SecureSum”) in a sequential manner on
the client side, the metaprotocol passes the number and methods of calculations on to the
server to handle it.

J. Schwinn et al. / Simplifying Multiparty Computation: A Client-Driven Metaprotocol 247

Figure 3. The client uses a new metaprotocol which calls the microprotocols defined in the shared input and
takes the number of metrics to be calculated as an input argument. This code describes the extension of the
code described for atomic operations in Figure 1.

3.1. Performance Evaluation

To evaluate the performance improvement of the proposed metaprotocol, we compared
its execution time against a baseline iterative approach that mimics the standard method
of executing individual microprotocols sequentially for each variable. The experimental
setup involved four participants, each consisting of a client, server, and database
encapsulated in individual Docker containers. The evaluation involved 200 runs, each
consisting of a mixed workload with 10 computations: 5 executions of the Secure Sum
microprotocol and 5 executions of the Statistics Frequency microprotocol (calculating
the mode, i.e. the most frequent value, and the histogram of the distribution of the input
values). During implementation and evaluation, we identified an issue with the iterative
baseline where clients were no longer synchronized on the current task after a certain
amount of time: The computation process typically involves a designated "distributor
client" responsible for initiating a round of calculations and broadcasting a task definition
including a unique task identifier (ID). Subsequent clients passively wait for any task ID
broadcast. However, if a previous task ID exists from a prior round of calculations,
waiting clients might only receive this outdated task ID and proceed with the associated
computation. Once the new, relevant task ID is broadcasted, no clients remain in a
waiting state as they have already processed the outdated ID. This results in a mismatch
of task IDs, leaving the subsequent computations incomplete as the clients are out of
sync. To avoid this discrepancy between the task definitions, a pause of 0.12 seconds had
to be introduced after each calculation. Additionally, a 2-second sleep time was
implemented between each run for both approaches.

4. Results

Table 2 shows the results of the performance evaluation of the metaprotocol. The overall
average execution per run time for all clients combined is 6.894s with the new client-
driven metaprotocol compared to 7.552s in the baseline iterative approach. With the new
client-driven metaprotocol the average execution time ranged between 6.395s ± 0.396s
and 7.393s ± 0.155s. Using an iterative approach without the metaprotocol, the average
execution time is between 6.806s ± 0.114 and 7.801s ± 0.12.

J. Schwinn et al. / Simplifying Multiparty Computation: A Client-Driven Metaprotocol248

Table 2. The results of the performance evaluation are reported per client as the mean time in seconds over
200 runs and the standard deviation. The row Iterative approach (ideal) refers to the iterative approach when
accounted for the mandatory sleep time in between iterations.

 Client 1 Client 2 Client 3 Client 4
Metaprotoc
ol

7.393 ± 0.155 7.391 ± 0.396 6.395 ± 0.397 6.395 ± 0.396

Iterative
approach

7.800 ± 0.141 7.801 ± 0.12 7.800 ± 0.139 6.806 ± 0.114

Iterative
approach
(ideal)

7.680 ± 0.142 7.682 ± 0.12 7.681 ±0.139 6.687 ± 0.115

5. Discussion

In this work, we were able to show the viability of a simplified metaprotocol enabling
the calculation of multiple different operations (e.g. a secure median) for different time
periods on a network of multiple participants. This protocol is easier to use on the client
side compared to the original implementation, and slightly faster compared to an iterative
approach.

This work was necessary because FSC/SIMON generally reduces more complex
calculations to simpler ones. For example, univariate or bivariate statistics are composed
of several secure sum computations. And the secure median implementation even creates
‘pipelines’ dynamically. The SIMON implementation specifically provides language
construct to start pipelines iteratively and collect their intermediate results in
accumulators.

However, this functionality is strictly server-side. If the user needed to do a complex
calculation that was composed of many small microservices, they would have to do so
in client code. This has two shortcomings: First, the complexity is kept client-side rather
than offloaded to the server, which is against the FSC design philosophy. Second, many
small calls to the API cause an excessive networking overhead.

In this solution, we have shown how to implement a metaprotocol that is client-
driven (i.e. the user can upload their complex data in one go) and then distribute the
computational tasks to the server side. In this way, the client code is kept clean and
simple to the user, e.g., a data scientist.

The results of the performance evaluation show an advantage over the iterative
approach even when the required sleep time has been accounted for. A more important
advantage of the metaprotocol is its ability to prevent task desynchronization among
participating clients.

Next steps in the further development of a more flexible SMPC service involve a
dynamic exception handling that allows clients to suspend their participation for several
rounds if they are unable to provide the agreed-on input and resume their participation if
they have the required input data for a computation.

6. Conclusion

We developed and evaluated a client-driven metaprotocol for SMPC that outperforms
the traditional iterative approach. Our metaprotocol:

J. Schwinn et al. / Simplifying Multiparty Computation: A Client-Driven Metaprotocol 249

• Offers a solution to execute multiple atomic operations with different
mathematical operations over various measurement periods
• Achieves an overall average execution time of 6.894s, compared to 7.552s for
the iterative approach
• Prevents task desynchronization among participating clients
• Offloads computational complexity to the server-side, simplifying client code
and reducing networking overhead.

Declarations

Conflict of Interest: The authors declare that there is no conflict of interest.

Contributions of the authors: Conceptualization and Investigation: CH, HB, MK, JS;
Methodology: JS, MK; Software: JS; Validation: JS; Writing - Original Draft: JS;
Writing - Review & Editing: All; Supervision: CH, MK; Funding acquisition: CH, HB.

Acknowledgement: This study was funded by the German Ministry of Education and
Research (BMBF) (grant number #01ZZ2005) and Stifterverband (grant number H110
5114 5132 36534). The funder played no role in study design, data collection, analysis
and interpretation of data, the writing of this manuscript, or the decision to publish.

References

[1] Shamir A. How to share a secret. Commun ACM 1979;22:612–3. doi:10.1145/359168.359176.
[2] Yao AC-C. How to generate and exchange secrets. 27th Annu. Symp. Found. Comput. Sci. Sfcs 1986,

1986, p. 162–7. doi:10.1109/SFCS.1986.25.
[3] Ballhausen H, Hinske LC. Federated Secure Computing. Informatics 2023;10:83.

doi:10.3390/informatics10040083.
[4] Wolfson M, Wallace SE, Masca N, Rowe G, Sheehan NA, Ferretti V, et al. DataSHIELD: resolving a

conflict in contemporary bioscience—performing a pooled analysis of individual-level data without
sharing the data. Int J Epidemiol 2010;39:1372–82. doi:10.1093/ije/dyq111.

[5] Bogdanov D, Laur S, Willemson J. Sharemind: A Framework for Fast Privacy-Preserving Computations.
In: Jajodia S, Lopez J, editors. Comput. Secur. - ESORICS 2008, Berlin, Heidelberg: Springer; 2008, p.
192–206. doi:10.1007/978-3-540-88313-5_13.

[6] Jagomägis R. SecreC: a privacy-aware programming language with applications in data mining.
University of Tartu, 2010.

[7] Keller M. MP-SPDZ: A Versatile Framework for Multi-Party Computation. Proc. 2020 ACM SIGSAC
Conf. Comput. Commun. Secur., New York, NY, USA: Association for Computing Machinery; 2020, p.
1575–90. doi:10.1145/3372297.3417872.

[8] Wirth FN, Kussel T, Müller A, Hamacher K, Prasser F. EasySMPC: a simple but powerful no-code tool
for practical secure multiparty computation. BMC Bioinformatics 2022;23:531. doi:10.1186/s12859-
022-05044-8.

J. Schwinn et al. / Simplifying Multiparty Computation: A Client-Driven Metaprotocol250

