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Abstract. Cruise ships are densely populated ecosystems where infectious diseases 

can spread rapidly. Hence, early detection of infected individuals and risk assessment 

(RA) of the disease transmissibility are critical. Recent studies have investigated the 
long-term assessment of transmission risk on cruise ships; however, short-term 

approaches are limited by data unavailability. To this end, this work proposes a novel 

short-term knowledge-based method for RA of disease transmission based on fuzzy 
rules. These rules are constructed using knowledge elicited from domain experts. In 

contrast to previous approaches, the proposed method considers data captured by 

several sensors and the ship information system, according to a recently proposed 
smart ship design. Evaluation with agent-based simulations confirms the 

effectiveness of the proposed method across various cases. 
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1. Introduction 

Cruise ships are closed, densely populated ecosystems that favor rapid infectious disease 

transmission. Such incidents could be prevented by using a sensor-based system capable 

of detecting symptoms of a disease in indoor areas of the ship. In this context,  knowledge-

based and probabilistic approaches have been used for risk assessment (RA) of disease 

transmission on-board [1]. These methods usually leverage evidence-based risk factors, 

e.g., occupancy, heating, ventilation, air conditioning, and  passenger exposure to the 

pathogen, retrieved from the literature [1–4]. However, they do not utilize risk factors 

identifiable by sensors, e.g., microphones for cough detection [1], and only a few aim at 

assessing the short-term risk of transmission [4]. To this end, this paper proposes a 

knowledge-based method implemented through fuzzy rules for RA of short-term COVID-

19 transmission (Figure 1). A knowledge-based approach was preferred due to the limited 

data availability of short-term disease transmission in cruise ships. The proposed method 

considers six risk factors in accord with the sensors, e.g., microphones and thermal  
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Figure 1. Overview of the RA method. a) Monitored environments; b) Installed sensors; c) Fuzzy rules; d) 

Risk assessment.

cameras, included in the smart ship design proposed in [1], as part of the HS4U2 project 

[5]. The sensors used in this project adhere to the “privacy by design” policy and the 

passengers consent to be monitored before boarding the ship. By utilizing these sensors,

the RA system is activated each time a symptom is detected.

To generate the fuzzy rules, the contribution of each factor to the RA of COVID-19 

transmission was defined based on related literature and consulting domain experts. The 

inference process is easy to understand since it incorporates semantic knowledge encoded 

by linguistic equivalents enabled by fuzzy logic [6]. Moreover, the uncertainty of the RA

process is quantified as a confidence score estimated by the response of the risk 

membership function. An agent-based modelling (ABM) tool is used to evaluate the 

proposed method. The ABM tool is validated on real epidemic outbreaks and is capable 

of simulating airborne disease transmission, as well as pedestrian movement [7].

2. Methodology

2.1. Risk Factors

To perform the RA of airborne disease spread, this work considers the following risk 

factors: maximum body temperature (BT), room ventilation (RV), exposure time (ET), 

total number of passengers (TNP) in a room, contact distance (CD), and total number of 

coughs (TNC).

Fever is commonly associated with infectious diseases; however, it has been reported 

that elevated BT assists in reducing the pathogen concentration within the infected host

[8]. The RV setting is defined as the airflow rate � (m3/h) calculated as � � ��� � �, 

where ACH and V are the number of air changes per hour and the volume of the examined 

area (m3), respectively. Based on [9], the optimal ACH is defined as 3.0 ACH, the low 

ACH as 1.5, whereas high is 6.0 ACH. The resulted fuzzy sets based on these values are: 

Low 	
� ��], Medium [
���� ���, and High 	��� ��� [9] with 0 indicating no ventilation.

To determine the severity of the risk related to the TNC, the pathogen concentration 

in a room is estimated based on a modified version of the Wells-Riley probabilistic model 

[10], defined as � � 
 � ��
��������������� , where � is the probability that an individual will be

infected, !" is the number of coughs per hour, #$ is the number of virus copies (VC) per 

mL emitted in a cough, %& is the breathing rate (m3/h), ' is the exposure time (h), � is

2 https://hs4u.eu/
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Table 1. Fuzzy sets for each risk factor. 

Fuzzy Set  RV BT TNC TNP CD ET Risk 

Low 
e1 [0,3369] 

[35,38] 
[0,61] [2,20] 

[0,1] [15,45] [0,0.3] 
e2 [0,2400] [0,44] [2,10] 

Med. 
e1 [1685,6738] 

[36,39] 
[25,97] [10,40] 

[0.5,1.5] [30,60] [0.1,0.5] 
e2 [1200,4800] [17,71] [5,20] 

High 
e1 [3369,6738] 

[38,42] 
[61,250] [20, 81] 

[1,2] [45,120] [0.3,1] 
e2 [2400,4800] [44,200] [10,44] 

the airflow rate in the room (m3/h), and ()*+ the minimum infectious dose that can cause 

infection in 50% of the population [10]. To find the maximum number of coughs (!"), the 

following variables were used : � , 
, %& � 
�� m3/h (3), ' � 
 h, ()*+ � 

-.VC/mL 
[7], #$ � . 

*.VC/mL [11], and �. � .�� [9]. According to the Wells-Riley model, the 

risk increases proportionally to the ET. Furthermore, the occupancy in an indoor space, 

i.e., TNP, affects the transmission risk of infectious diseases [1]. The area occupied by a 

person is defined by the surface O (m2) of a circle with a radius r (m). Assuming that each 

person occupies / � 
.01, 2.can be calculated as: 2 � 3 4
5�6, where A is the surface area 

of a room and S is the TNP. Subsequently, 7 � 2  denotes the distance between two 

individuals, i.e., CD. Therefore, considering that droplets emitted through coughing can 

spread up to 1 m [9], the risk increases when  7 � 2 8 
m and decreases when 7 � 2 9 
m. 

When 7 � 2 9 2 m, the distance between individuals is considered as safe [12].  

In this study, two indoor environments, i.e., e1 and e2 (Figure 1(a)), with a surface area 

of 351 m2 and 250 m2, respectively, and a height of 3.2 m are examined. The capacity of 

e1 and e2 was set to 81 and 44 people, respectively. Based on the above, the resulting 

fuzzy sets are presented in Table 1. These fuzzy sets are defined in such a way that the 

overlapping regions cover the range of values of each risk factor. 

2.2. Fuzzy Rules 

To perform RA of COVID-19 transmission, a Mamdani fuzzy inference system is defined 

[13]. A total number of 154 fuzzy rules were elicited by combining the considered risk 

factors and then empirically selected by domain experts. An indicative example rule is as 

follows: “IF Room Ventilation is Low AND Body Temperature is Low AND Total 

Number of Coughs is Low AND Total Number of Passengers is Low AND Contact 

Distance is Low AND Exposure Time is Low THEN Risk is Low”. The activation of the 

fuzzy rules depends on the input entries and the utilized logic operators. Finally, the 

output membership functions are aggregated and defuzzified, resulting in a final crisp 

output, i.e., risk and confidence (Figure 1(d)). 

2.3. Experimental Setup 

The examined environments e1 and e2 were used to define different cases with varying 

RV, BT, TNC, TNP, and CD configurations over a period of up to 120 min. The method  

was evaluated in 20 cases, 6 of which are indicatively presented in Table 2, where the 

fuzzy sets are indicated as (L)ow, (M)edium and (H)igh and the risk inferred by the fuzzy 

rules as RF. The confidence score is defined as the degree of membership to the fuzzy set 

responsible for RA. In addition, the ABM tool was employed for the evaluation by  
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Figure 2. Snapshots of two different cases for a) Case 2 and b) Case 6 (Table 2). Blue circles indicate healthy 

passengers, red circles indicate infectious individuals, purple circles are infected individuals, and yellow 

circles represent the spread of droplets emitted from a cough. 

approximating the transmission risk (RT) i.e., the total number of infected people at the 

end of the simulation. 

3. Results 

The results presented in Table 2 show that the proposed method aligns with the ABM tool 

for RA, with high confidence in estimating the transmission risk across most cases. 

Nevertheless, increased TNC, TNP, and ET lead to higher transmission risk even with 

optimal RV. Snapshots of the ABM simulations for Cases 2 and 6 (Table 2) are depicted 

in Figure 2. It can be observed that closer interaction between infected and healthy 

individuals is more probable in certain cases. In most cases, the RA performed by the 

proposed method is comparable to the results obtained from the ABM simulations, with 

an accuracy of 83.3% for 20 cases. The inaccurately predicted risk, i.e., for e2 in Case 1 

(Table 2), estimated by the proposed method can be attributed to factors related to 

passenger movement and interactions that are not accounted for in the rules, since they 

cannot be detected by the utilized sensors. 

Table 2. Input risk factors and RA for e1 and e2. 

No 
RV   BT   TNC TNP   CD     ET RF Confidence RT 

e1 / e2 e1,2 e1 / e2 e1 / e2 e1,2 e1,2 e1 / e2 e1 / e2 e1 / e2 

1 L/L L M/M L/M M M L/Η 0.88 / 0.26 L/L 

2 L/L M M/M L/M M M M/M 0.36 / 0.79 M/M 

3 M/M M H/H H/H L H Η/H 0.39 / 0.38 H/H 

4 M/M H H/H M/H Μ H H/H 0.71 / 0.75 H/H 

5 M/M H H/H Η/H Η H H/H 0.43 / 0.74 H/H 

6 M/M Μ Η/Η H/H Η H H/H 0.58 / 0.74 H/H 

4. Discussion and Conclusions 

In this paper, a knowledge-based method using fuzzy rules has been proposed with the 

aim of performing airborne transmission estimation on cruise ships. To define the fuzzy 

rules, the proposed method considers data provided by the sensors and the information 

system of the ship in accordance with a recently proposed smart ship design. These 

sensors enable early detection of infectious diseases, while the fuzzy knowledge-based 
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system provides an automated and interpretable RA process that can be used to prevent 

disease transmission. In contrast, other studies have focused on long-term transmission 

[2,3] or used probabilistic models without using sensors [4] that could prove ineffective 

in containing an epidemic outbreak. Evaluation through ABM simulations confirmed the 

effectiveness of the proposed method in various cases for two enclosed areas. Future work 

will integrate additional risk factors, such as the use of masks, investigation of the effect 

of behavioral dynamics of pedestrians in the RA process, and a detailed implementation 

of an enhanced RA process to account for the entire population of the cruise ship. 
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