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Abstract. This paper presents a comprehensive workflow for integrating revolving 
events into the transitive sequential pattern mining (tSPM+) algorithm and Machine 
Learning for Health Outcomes (MLHO) framework, emphasizing best practices and 
pitfalls in its application. We emphasize feature engineering and visualization 
techniques, demonstrating their efficacy in capturing temporal relationships. 
Applied to an EGFR lung cancer cohort, our approach showcases reliable temporal 
insights even in a small dataset. This work highlights the importance of temporal 
nuances in healthcare data analysis, paving the way for improved disease 
understanding and patient care. 
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1. Introduction 

Electronic Health Records (EHRs) have transcended their primary billing and 
communication functions to emerge as invaluable repositories for unraveling patient 
journeys and gaining profound insights into the intricacies of complex diseases [1]. 
Traditional approaches, such as Pattern Mining and Machine Learning (ML), have been 
foundational in extracting valuable insights from healthcare data [1,2]. However, their 
efficacy can be hindered by the limitations of conventional techniques like one hot 
encoding, which overlooks the inherent temporal relationships and order of clinical 
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records [3–6]. To overcome this challenge, Estiri et al. developed the transitive sequential 
pattern mining (tSPM) algorithm boosting downstream machine learning leveraging the 
Machine Learning for Health Outcomes (MLHO) framework [3,4,7,8]. Hügel et al. [9] 
presented tSPM+, an enhanced version of tSPM. Both algorithms define a sequence as a 
tuple of two events. Operating on the same principle, they transitively combine all events 
from a patient’s history into sequences while providing seamless integration into existing 
machine learning workflows. Nevertheless, the oversight of inherent temporal 
relationships still poses a significant challenge [5,10], particularly in diseases 
characterized by revolving events or therapies, such as cancer, where the order of 
therapies is of the essence for the treatment success [11]. This paper contributes a 
comprehensive workflow integrating revolving events into the tSPM+ and MLHO 
framework. Moreover, through visualization of complex temporal relationships of 
significant events, we add a well understandable layer of information. We validated our 
approach on an EGFR lung cancer cohort comprising 200 patients. 

2. Methods 

2.1. Temporal Characterization with the Extended tSPM+ and MLHO Workflow  

We extended the original tSPM+ and MLHO workflow [9] by a feature engineering step 
in the beginning and a visualization step in the end. Figure 1 visualizes the workflow. 
 

 

 
Figure 1. The extended tSPM+ and MLHO workflow: We extend the original tSPM+ and MLHO workflow 
[9] by a feature engineering step for revolving events and an additional step for the visualization revealing 

the temporal relationships of the significant sequences from the ML model as a network graph. 

2.1.1. Feature Engineering 

EHR data from cancer patients contains revolving events occurring multiple times in the 
patient trajectories, e.g. different therapies, and corresponding outcomes, such as a tumor 
progress or regress. Consequently, mining transitive sequences results in sequences 
starting with a therapy and ending with the outcome of a later therapy. To ensure 
encoding of direct therapy results, we add additional augmented events. We added those 
on different levels of coarseness, ranging from the event that the therapy took place 
(th_X) via the therapy type (th_X_systemic) to the specific drug used in the systemic 
therapy (th_X_Erlotinib). Additionally, we store a list of all unique coarse events for 
each coarseness level. Finally, we transform all events into the required input format of 
a table of triples (date, event, patient id), which we call from now on “dbMart”. 

2.1.2. Temporal Characterization Using tSPM+ and MLHO 

We utilize the tSPM+ Docker container [9], which provides tSPM+ and MLHO in an 
RStudio instance, to apply tSPM+ and MLHO. We applied oversampling by quadrupling 
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each entry in the dbMart to stabilize the fluctuation in the ML model output introduced 
by our small sample size. Following the guide [9], we transformed the dbMart into 
numeric representations. Mining sequences that pair coarse events, such as th_X � 
th_X_systemic, would introduce noise. To avoid it, we erased all coarse events from the 
dbMart before mining all transitive sequences. Afterwards for each coarseness level, we 
iteratively: 1) add all events from that level to the dbMart, 2) mine sequences containing 
a coarse event and append them to previously mined, 3) remove coarse events from the 
dbMart. Finally, we applied the minimize sparsity maximize relevance (MSMR) 
algorithm [3] before handing significant sequences and demographics to MLHO. 

2.1.3. Data Visualization 

Following the aforementioned guide, we display the most significant sequences for the 
ML model in a table. While allowing to sort the sequences by their relevance, this 
approach does not reveal the overall temporal relationships of the significant events. 
Network visualization plays a crucial role in transforming data into insights by making 
complex relationships clear and easily interpretable. Therefore, plotting the sequences in 
a graph, where each event is a vertex and a connecting edge represents the corresponding 
sequence, allows us to identify patterns, trends, and potential causal effects that might be 
difficult to discern from a simple table. 

2.2. Validation Case Study 

We applied the workflow to a cohort of 200 lung cancer patients with EGFR mutations. 
Additionally, the data included timestamped features for the tumor classification, 
metastases information, co-mutations on gene level, up to twelve sequential cancer 
therapies as well as outcomes and demographic data. For the machine learning in MLHO, 
we utilized random forest (RF) as classifier with 5-fold cross validation to postdict the 
survival after 8 months. It is to mention, that the goal of the case study is not to derive 
new medical insights, but instead to show the feasibility and usability of the workflow. 

3. Results 

3.1. Feature Engineering 

The feature engineering step has to be highly adjusted and therefore also reimplemented 
for each data set. We created four additional augmented events for each therapy and two 
augmented for the results. For therapy events, we encoded 1) if therapy number X took 
place (th_x), 2) the type of therapy number x (th_x_type), 3) just the type of the therapy 
(surgery, radiation or systemic) and 4) the name of of drug. For the outcome of the 
therapy, we created the augmented events 1) encoding the outcome alone (progression 
(PD), stable disease (SD), partial remission (PR) and complete remission (CR)) and 2) 
together with the number of the therapy (th_x_outcome). 

3.2. Temporal Characterization Using tSPM+ and MLHO 

After mining the sequences with tSPM+, we extracted the 70 most significant leveraging 
the MSMR algorithm. Following the MLHO workflow, we represented the most relevant 
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sequences from the ML model in a table including derived significance values from the 
underlying caret R-package [8,12]. Table 1 shows the five most significant features. 
 
 

Table 1. Table displaying the five most important features for the applied ML model (RF) The feature 
importance is directly derived from the caret R-package and is normalized between 0 and 100, with 100 being 
the most significant feature. The feature importance is ML model dependent (see caret documentation). 

Feature Feature Importance 
Systemic Therapy —> Best Result (BR): PD 100 

th_1 —>  BR: PD 86.7 
th_1 —> Systemic Therapy 74.9 

Systemic Therapy —> th1_BR: PD 72.8 
th_1 —> Surgery 72.27 

3.3. Data Visualization 

We leveraged the iGraph R-package [13] to visualize the most significant sequences for 
the classification task in a directed graph. Figure 2 shows a detailed view of the graph.. 
The thickness of the edges correlates with the computed significance in the ML model 
allowing researchers to get a clear overview regarding the temporal relationship of the 
events, as well as their importance. 
 
 

 
Figure 2. Image detail of a graph to visualize the most relevant sequences and events from the case study. 

Each vertex represents an event, each edge means that the sequence connecting the vertices is significant for 
the prediction target. The thickness of the edge is representing the feature importance value of the sequence. 

Reading example: Systemic Therapy->BR:PD: Progress in disease after a systemic therapy is a relevant 
feature to predict the death in the first 8 months, compare to Table 1. The full figure is available online [14]. 

3.4. Case Study 

As anticipated, the case study did not report any unexpected results, instead the 
significant sequences in the ML model fitted our current knowledge, e.g. systemic 
therapy followed by progressive disease is crucial to postdict death in the first 8 months 
after the diagnoses. The sequences reveal that not only the type of therapy, but also its 
relative timing is important. Additionally, co-mutations, e.g. TP53, which is a known 
predictor in lung cancer patients with an EGFR mutation [15], were important features. 

4. Discussion and Conclusions 

Our work offers insights regarding the application, as well as the pitfalls and best 
practices when using the tSPM+ algorithm to reveal temporal relationships and leverage 
the mined knowledge in downstream ML workflows. It is to mention, that the employed 
case study, despite encompassing a small cohort, was still sufficient to prove the 
reliability of the workflow results. The targets we chose are not of groundbreaking 
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biomedical nature, but are rather a sanity check to prove the efficacy and reliability of 
the tSPM+ algorithm and the employed downstream techniques on a small data set. 
Unveiling new biomedical insights is subject to future works, e.g. using if the EGFR 
mutation is common or uncommon as postdiction target to classify the corresponding 
temporal relationships of the events from the patient trajectories. 
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