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Abstract. Continuous monitoring of physiological signals such as 
electrocardiogram (ECG) in driving environments has the potential to reduce the 

need for frequent health check-ups by providing real-time information on 

cardiovascular health. However, capturing ECG from sensors mounted on steering 
wheels creates difficulties due to motion artifacts, noise, and dropouts. To address 

this, we propose a novel method for reliable and accurate detection of heartbeats 

using sensor fusion with a bidirectional long short-term memory (BiLSTM) model. 
Our dataset contains reference ECG, steering wheel ECG, photoplethysmogram 

(PPG), and imaging PPG (iPPG) signals, which are more feasible to capture in 

driving scenarios. We combine these signals for R-wave detection. We conduct 
experiments with individual signals and signal fusion techniques to evaluate the 

performance of detected heartbeat positions. The BiLSTMs model achieves a 

performance of 62.69% in the driving scenario city. The model can be integrated 
into the system to detect heartbeat positions for further analysis. 

Keywords. Sensor fusion, Machine learning, Personal mobility, BiLSTM, 

Heartbeat detection. 

1. Introduction 

According to the World Health Organization, cardiovascular diseases are a leading cause 

of global mortality, responsible for approximately 17.9 million deaths annually and 

accounting for 32% of all deaths globally [1]. Continuous monitoring of heartbeats 

enables early disease detection, improves therapeutic outcomes, and ultimately reduces 

mortality rates [2]. Several studies have explored heartbeat detection during driving, 

highlighting the potential for integrating health monitoring into vehicles [3]. Sensor 

fusion techniques are crucial for integrating data from multiple sensors to enhance the 

reliability of peak detection in physiological signals. By combining signals from different 

sensors, we can overcome the limitations of individual sensors and improve the overall 

quality of the data. In this paper, we use bidirectional long short-term memory 

(BiLSTMs) models, which are well suited for analyzing sequential data, such as time 

series from physiological signals [4].  
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BiLSTM models can capture long-term dependencies in the data, making them more 

suitable for analyzing ECG signals over time. Overall, this paper aims to answer the 

research question “Does the BiLSTM model outperform the existing signal fusion model 

for in-vehicle heartbeat monitoring?”. To demonstrate the importance of continuous 

monitoring in driving spaces and the potential of sensor fusion techniques with the 

BiLSTMs model in improving the reliability and accuracy of heartbeat detection in 

physiological signals.  

2. Methods 

2.1. Data Set 

In previous work, we published study data with 19 subjects while driving [5]. The data 

comprises reference ECG, steering wheel ECG, and PPG signals in a comma-separated 

value (CSV) format, as well as red, green, and blue (RGB) channels for the segmented 

cheeks in MatLab (MAT) format. The iPPG data was pre-processed using the SeetaFace 

face engine to ensure the anonymity of participants [5]. Additionally, data includes 

subject information such as subject ID, age, height, weight, gender, and known diseases. 

For 15 min each, the dataset encompasses recordings from healthy young subjects in city, 

highway, and rural settings, both at rest and in motion. Only the city data was utilized 

for experimentation.  

2.2. Data-Preprocessing 

2.2.1. Ground Truth  

We obtain ground truth from a reference ECG sensor, which records the ECG with three 

adhesive electrodes placed on the chest's standard positions. We detect the R-peaks 

position using the simultaneous truth and performance level estimation (STAPLE) 

algorithm of Kashif et al. [6]. STAPLE integrates nine state-of-the-art algorithms and 

determines R-wave positions through a weighted majority vote.  

2.2.2. Input Data and Pre-Processing 

The input data for the signal fusion algorithm are ECG, PPG, iPPG, and the ECG 

reference as ground truth. The pre-processing has three different steps: 1. Median 

filtering is applied, 2. Normalization of the amplitude for the interval [−1, 1], 3. 

Calculation of the signal-to-noise ratio (SNR) for individual windows using an optimal 

threshold to eliminate noisy segments. Segments removed from the steering wheel ECG 

are subsequently removed from the PPG and iPPG signals. The 15-minute recording with 

a sampling rate of 500 Hz is divided into snippets of 501 samples. The overlap is 490 for 

training data snippets and 500 for testing snippets, which is based on Chandra et al. [7]. 

2.3. Signal Fusion using BiLSTMs 

The BiLSTM network architecture for peak detection in ECG signals consists of three 

bidirectional LSTM layers, each followed by batch normalization to enhance training 

stability [4].  
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The first bidirectional LSTM layer comprises eight units, while the subsequent 

layers consist of four and two units. This design allows the model to capture temporal 

dependencies in both forward and backward directions, aiding in the identification of 

ECG peaks (Fig. 1). To mitigate overfitting, we apply a dropout with a rate of 0.2 to each 

LSTM layer, while we utilize L2 regularization with a strength of 0.01 in the final dense 

layer to further enhance generalization. 

We define the input shape of the model as (length of signal, 500, 3), indicating 

sequences of 500-time steps with a fusion of three signals. The output layer is a dense 

layer with a sigmoid activation function, suitable for binary classification tasks. We train 

the model using the hinge loss function, commonly used in support vector machine 

(SVM)-like models for binary classification and use the Adam optimizer with a learning 

rate of 0.001.  

 

 
Figure 1. BiLSTM model architecture. 

2.4. Attention Mechanism 

The attention layer built initializes a trainable weight matrix that represents the attention 

weights. These weights are learned during the training process and determine the 

importance of each element in the input sequence.  

The call method applies these attention weights to the input sequence, scaling each 

element by its corresponding attention weight. This scaling process allows the model to 

prioritize important signals that contribute to decision-making and suppress irrelevant 

ones, effectively focusing its attention on the most informative parts of the input 

sequence.  

2.5. Performance Metrics 

Class 0 for a snippet means no heartbeat and class 1 includes a heartbeat. The results for 

each snippet are compared to the ground truth to evaluate the performance.  

We determine the optimal threshold for classification using the area under the 

receiver operating characteristic (ROC) curve (Fig. 2). The receiver operating 

characteristic (ROC) curve illustrates the trade-off between the true positive rate (and the 

false positive rate. 
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The threshold is a value used to convert the continuous output of the model 

(predicted probabilities) into binary predictions (0 or 1).  

 

 
Figure 2. ROC curve for the BiLSTM. 

 

The evaluation of the BiLSTM model involves several key metrics to assess its 

performance in peak detection within ECG signals. We train and test the model by 

leaving-one-out cross-validation (LOOCV). The evaluation includes metrics such as 

positive predictive value (PPV), sensitivity (S), and performance (P), which is � �

���� � ��	
 . The loss-epoch curve is used to monitor the training and validation 

performance of a machine learning model over the course of training epochs.  

3. Results 

For the driving scenario city, the BiLSTM approach with the fusion of all signals 

outperforms the BiLSTM approach with just one signal by 62.69% (Table 1). The iPPG 

signal has the lowest performance with 53.50%. These results show that the fusion of all 

sensors outperforms the usage of a single sensor. 

Table 1. Performance of the BiLSTM for ECG, PPG, and iPPG during the driving scenario city. 

Approach Sensitivity in % PPV in %              Score in % 
ECG 49.51 58.85 54.18 

PPG 58.42 53.54 57.34 

iPPG 49.13 57.86 53.50 
ECG+PPG+iPPG 68.97 56.37 62.69 

 

4. Discussion 

Several publications are focusing on heart rate detection during driving with one sensor 

[8,9]. Walter et al. implemented capacitive ECG (cECG) into the backrest of the seat to 

derive the heart rate and remained stable after approx. 250 seconds [8]. Gomez-Clapers 

et al. integrated ECG electrodes into a plastic steering wheel and analyzed the 

performance of a 60 s recording with twelve subjects in a lab environment [9]. Warnecke 

et al. analyzed the utilizable recording time with signal fusion based on a convolutional 

neural network (CNN) structure [5]. Because of the same data set, the performance 

results are directly comparable.  
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For the driving scenario city, the new BiLSTMs model achieved a performance of 

62.69%, outperforming the existing CNN fusion approach from Warnecke et al., which 

had a performance of 47.90% [5].  

This improvement demonstrates the effectiveness of the proposed method in 

enhancing the accuracy of heartbeat detection in driving environments. However, the 

analysis has not considered the entire signal including all the driving scenarios such as 

in [5]. The signal fusion with BiLSTM has a runtime of less than 5 minutes. In terms of 

memory and speed, BiLSTM models are more efficient in handling sequential data. 

CNNs require more memory and computation due to their kernel operations and pooling 

layers. BiLSTMs sequential processing captures long-term dependencies in the data 

more effectively, better performing in tasks such as peak detection. For the driving 

scenarios of highways and countryside, we still need to calculate the score with the 

BiLSTM approach. There are several suggestions for improving upon the BiLSTM 

model. Transformer architectures, known for their parallel processing capabilities, can 

also be explored for further improving memory and speed efficiency [10]. Additionally, 

meta-learning models combined with high-performance processors offer enhanced 

learning capabilities and faster processing speeds, leading to improved overall 

performance. 

5. Conclusions 

We developed a model for multi-modal signal fusion that works effectively and fast. 

Performing a larger number of experiments with multiple combinations of networks 

improves the performance of heartbeat detection. This is a primary step towards 

explaining the black-box nature of deep learning models.  
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