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Abstract. Modern generative artificial intelligence techniques like retrieval-

augmented generation (RAG) may be applied in support of precision oncology 

treatment discussions. Experts routinely review published literature for evidence 
and recommendations of treatments in a labor-intensive process. A RAG pipeline 

may help reduce this effort by providing chunks of text from these publications to 

an off-the-shelf large language model (LLM), allowing it to answer related questions 
without any fine-tuning. This potential application is demonstrated by retrieving 

treatment relationships from a trusted data source (OncoKB) and reproducing over 

80% of them by asking simple questions to an untrained Llama 2 model with access 
to relevant abstracts. 
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1. Introduction 

The rapidly growing field of precision oncology is often dedicated to determining 

personalized cancer treatment plans tailored to individual patients based on their clinical 

phenotype and genotype, characterized by molecular profiling [1]. In practice, 

identifying these treatments relies on a unique combination of expert medical knowledge, 

data from the patient’s entire clinical and genomic history, and recommendations and 

recent findings recorded in knowledgebases, meta-knowledgebases, and published 

literature. This last component is time-intensive, even for experts, and there is 

considerable interest in developing automated knowledge generation approaches with 

the goal of turning literature into (actionable) knowledge. 

The recent surge of generative artificial intelligence has drawn attention to the 

application of advanced large language models (LLMs) to biomedicine, but few 

organizations have the resources to train or fine-tune these models for specific tasks. The 

technique of Retrieval-Augmented Generation (RAG) [2] can represent a middle ground 

in which an off-the-shelf (open-source or proprietary) LLM is paired with contextual 
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information pulled from a minimally prepared set of documents. The text from the 

documents is broken into chunks placed in a vector embedding. Then, based on the actual 

input query, the most closely related chunks are retrieved and passed to the LLM as plain 

text that provides additional context for the question at hand. 

In this paper, we briefly test the ability of RAG pipelines to capture the same 

treatments identified by a reliable precision oncology data resource using contextual 

literature abstracts. 

2. Methods 

OncoKB is a manually curated, high-quality knowledge base containing, among other 

knowledge/information, a compilation of therapeutic implications for specific genomic 

alterations and cancer types [3,4]. We obtained therapeutic relationships for a selection 

of seven variants (chosen in consultation with oncologists at the Johns Hopkins Medicine 

molecular tumor board) from OncoKB on 20 March, 2024. For each variant, we used 

only the information in the therapeutic table from the OncoKB website and determined 

the cancer type(s) and drug(s) associated with each entry. These were used to form the 

basis of the treatment queries for the LLM, and to judge the correctness of the responses. 

We also gathered all PMIDs or abstracts hyperlinked in the OncoKB description column. 

The text of each abstract was obtained and placed into individual files. 

The RAG pipeline was constructed in a DataBricks environment, using a small 

NCasT4_v3 GPU accelerated cluster (4 vCPU, 1 GPU, 28GiB Memory) running version 

13.3 of the DataBricks runtime. The pipeline relied on the LangChain framework [5] for 

both text processing and model execution. 

The abstract files were loaded and chunked into individual text strings with a 

maximum size of 128 tokens. Then, a vector search index was created in DataBricks, 

which handled the embedding calculations for the chunks. Only the abstracts associated 

with a single variant were loaded at one time, and the vector search index was reset 

between variants. 

The final chat model was prepared as a LangChain RetrievalQA chain, with four 

text chunks to be pulled from the index and using a template with placeholders for both 

the vector search index results and a user-provided question. The template is shown in 

Figure 1. One other chain was evaluated as well, which used eight text chunks as context 

instead of four and is referred to as the Extended Context scenario. The two LLMs used 

were the open-source Llama 2 70B Chat model and the Mixtral-8x7B Instruct model. 

The question that was provided during each run was based on the variant of interest 

and the cancer types taken from the OncoKB data. It followed the format, “What 

treatments are recommended for a patient with {cancer_type} with the {variant} 

mutation?” 

Suggested treatments were extracted from the JSON-style output of the models and 

compared against the expected drugs from the OncoKB data. The matching procedure 

was fairly lenient, to better simulate a human reviewing the output. 

Finally, to compare a non-LLM data extraction pipeline, we used PubTator3, a tool 

by the National Library of Medicine that recognizes several types of entities and their 

relations in the literature [6]. These annotations are readily available and contain entity 

relationships that can convey similar information to the OncoKB therapeutic inferences, 

albeit at a more granular scale. The PubTator3 output for each PMID of interest was 

downloaded on 1 April, 2024, although the five non-PMID abstracts cited by OncoKB 
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could not be found in PubTator. All PubTator3 relations from the abstracts for a specific 

variant were aggregated and assessed to see whether they contained enough information 

to support each OncoKB therapeutic relationship. 

 

 

 

Figure 1. The prompt template for the RAG pipeline. 

 

3. Results 

The seven variants chosen for analysis and the number of singular treatment relationships 

derived from the OncoKB data are shown in Table 1. The BRAF G466R mutation had 

the largest number of treatments at eight because the OncoKB data named four specific 

cancer types with two drugs listed for each (Cobimetinib and Trametinib). 

 

 

Table 1. The variants used for the analyses and the number of total treatments derived from the OncoKB data 

as well as the number of abstracts cited by OncoKB that could be obtained for the vector embeddings. 

Variant Derived Treatments Abstracts Obtained 
AKT E17K 3 5 

BRAF G466R 8 3 

ESR1 L469V 2 5 
IDH2 R172G 3 3 

PALB2 M723fs33 4 4 

PIK3CA E545K 4 6 
PTEN P248fs 3 4 

 

 

As summarized in Figure 2, of the 27 total treatments across the variants, the Llama 

2 model captured 16 of them, and the Mixtral model 17 using the initial four context 

chunks. In the Extended Context scenario with eight text chunks, the Llama 2 model 

greatly improved and captured 22 treatments while the Mixtral model remained the same 

at 17 treatments. 

Both Llama 2 and Mixtral models followed the requested JSON-style output for all 

questions, although they used multiple JSON objects when listing multiple treatment 

items. Both frequently produced extra free text after the requested JSON-style format as 
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well. These sections usually provided disclaimers about the recommendations or 

sometimes additional rationale for the choice of treatments. 

 

 

Figure 2. The performance results of the Llama 2 and Mixtral LLMs, as well as PubTator3, at providing 

treatment recommendations that reproduced the variant-specific OncoKB-derived treatments. 

 

 

The PubTator3 relations derived from the abstracts were found to support 19 of the 

OncoKB treatment items. These were usually relations of the form (CHEMICAL, treat, 

DISEASE) and often supported further by a (GENE, associate, DISEASE) relation 

and/or a (CHEMICAL, negative_correlate, GENE) relation, indicating an inhibitor. 

These results had to be interpreted at the gene level because PubTator3 did not identify 

any relations for the variants of interest except for AKT1 E17K. 

4. Discussion 

In the best instance, a RAG pipeline with the Llama 2 model reproduced over 80% of 

the simple OncoKB confirmed therapeutic relationships across seven variants when 

seeded with relevant literature abstracts. RAG pipelines are simple to create, requiring 

only a collection of literature or similar text sources. Furthermore, this demonstrates they 

can be effective even when handling only abstracts, even though the therapeutic 

implications confirmed by OncoKB may be embedded within the papers. The RAG 

approach can also outperform the concept level relationship detection of PubTator3 in 

drawing therapeutic conclusions. 

As an exploratory study, our work has a few limitations that point toward avenues 

for further research. The selection of literature was limited to papers already known to 

be related to the variant of interest, allowing us to demonstrate the (high) sensitivity of a 

RAG approach. We believe that other applications could find small and relevant 

literature data sets as well, though, through well-targeted querying methods. Secondly, 

the use of abstracts rather than full text papers may limit the data available. OncoKB 

curators would have reviewed the entire documents when verifying the therapeutic 

K. Kreimeyer et al. / Using Retrieval-Augmented Generation986



evidence, but access to full text literature is often highly restricted for data mining uses 

like these pipelines. Finally, we did not spend extensive time on prompt engineering, but 

we do not believe this is a vital step for this application, especially since the outputs 

always followed the requested JSON-style formatting. We did test a shorter variant of 

the template, but found very few notable differences. 

When using eight text chunks of context instead of four, the Llama 2 model netted 

six additional correct treatments. The larger context had a better chance of pulling in 

relevant information, as in the case of the PIK3CA E545K material, where it was 

necessary to even see the name of one of the target drugs (RLY-2608), which had not 

appeared in the first four chunks. However, the new text may also prove misleading, as 

in the case of the PALB2 M723fs33 mutation where new statements about Rucaparib 

may have have caused the model to trim out its previous correct responses of Olaparib 

and Talazoparib plus Enzalutimide for prostate cancer. 

We did not attempt to differentiate between the OncoKB levels of evidence. The 

models did provide rationales for the treatment recommendations as requested, but 

parsing these to determine the true level of evidence behind the treatment would likely 

be subjective. This would be more recommended if searching for newer treatment signals. 

Many of the variant and therapy relationships we selected have been documented in 

literature for many years. 

5. Conclusion 

We believe that RAG methods show promise in reproducing oncology treatment 

knowledge from OncoKB with a simple pipeline that does not require LLM fine-tuning. 

Further studies could explore whether providing more timely information could identify 

emerging (or even novel) treatments. Automatic generation of this kind of knowledge 

may expedite oncologists’ literature review and decision-making steps. 
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