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Abstract. Synthetic tabular health data plays a crucial role in healthcare research, 

addressing privacy regulations and the scarcity of publicly available datasets. This 

is essential for diagnostic and treatment advancements. Among the most promising 
models are transformer-based Large Language Models (LLMs) and Generative 

Adversarial Networks (GANs). In this paper, we compare LLM models of the Pythia 

LLM Scaling Suite with varying model sizes ranging from 14M to 1B, against a 
reference GAN model (CTGAN). The generated synthetic data are used to train 

random forest estimators for classification tasks to make predictions on the real-

world data. Our findings indicate that as the number of parameters increases, LLM 
models outperform the reference GAN model. Even the smallest 14M parameter 

models perform comparably to GANs. Moreover, we observe a positive correlation 

between the size of the training dataset and model performance. We discuss 
implications, challenges, and considerations for the real-world usage of LLM 

models for synthetic tabular data generation. 
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1. Introduction 

In the healthcare sector, various types of data, including structured tabular data, are 

collected. Stringent laws such as Switzerland's human research legislation and the 

European GDPR require privacy preservation. To meet these requirements, efficient 

methods for generating synthetic data are essential to facilitate open research, 

particularly for healthcare institutions with limited resources. Synthetic data plays a 

crucial role in advancing AI applications in healthcare by offering augmented and 

representative alternatives to real data, thereby reducing privacy concerns. This is 

essential for progress in diagnosis, treatment, and advancements in patient care [1]. 

Recent state-of-the-art methods for generating synthetic tabular data using 

transformer-based Large Language Models (LLMs) are promising alternatives to 

Generative Adversarial Networks (GANs). Unlike GANs, LLMs can deal with the 

complexity of high dimensionality out-of-the-box due to its autoregressive attention-

based mechanism, promising to offer effective and efficient synthetic tabular data 

generation [2,3]. The traditional GAN architecture requires preprocessing steps to 

encode data into a suitable format for training, depending on data types and distributions. 

A significant advantage of LLMs is their capability to bypass the need for one-hot 
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encoding of categorical data, which would increase the data dimensionality, by treating 

tabular data as full text during preprocessing. However, a drawback is that they may not 

be as efficient in the training process compared to GANs, even though they themselves 

suffer from issues like local-minima, mode-collapse, unstable training, and – depending 

on the specific architecture – the necessity of separately synthesizing categorical and 

numerical data. Avoiding the latter issue is crucial for capturing the interplay and 

correlations between columns [4-7]. Training instability of GANs can be addressed, for 

instance, by using the Wasserstein loss with gradient penalty [5,6]. To address the 

efficiency challenge in LLMs, techniques such as token sequence compression and 

different token padding strategies have been proposed [2]. 

In the following, we will compare LLM models from the Pythia LLM Scaling Suite, 

with model sizes ranging from 14M to 1B [8], against two models: the reference CTGAN 

model and a model trained on the original dataset. The generated synthetic data are used 

to train random forest estimators for making predictions on the real-world data in 

classification tasks. Our comparison will consider how the quantity of training data 

influences the utility of synthetically generated data. 

2. Methods 

2.1. Datasets 

Three tabular datasets with different characteristics were obtained from the UCI Machine 

Learning Repository (CDC Diabetes Health Indicators2; Adult3) and Kaggle (Smoking 

and Drinking Dataset with Body Signals4). Two of these datasets pertain to healthcare 

and are commonly utilized for classification tasks, while the third (Adult) represents 

demographic data. All three datasets contain binary target variables. 

In the preprocessing step, missing data were removed from all datasets to ensure 

consistency in sample sizes for subsequent utility calculations. The synthetic generation 

of missing data was initially considered, but it was ultimately omitted due to concerns 

about the reliability and accuracy of the generated data. Synthetic data generation 

techniques may not always capture the complex patterns and nuances present in real-

world data, especially when dealing with missing data points. Additionally, the potential 

for introducing biases or inaccuracies in the synthetic data could have adverse effects on 

downstream analyses or applications. Therefore, it was decided to omit synthetic 

generation of missing data to ensure the integrity and validity of the dataset. Some 

features of the original datasets were excluded to decrease training time.  

 

Table 1. Description of datasets. Dataset abbreviations are provided in parentheses. “Cont.” denotes continuous 

columns, “Cat.” represents categorical columns, and “Bin.” indicates binary columns. 

Dataset Size Features Cont. Cat. Bin. 
Adult (ADT) 32,561 15 4 9 2 

CDC Diabetes Health Indicators (CDI) 253,680 22 3 4 15 

Smoking and Drinking Dataset (SDD) 991,346 19 5 10 4 

 
2 https://archive.ics.uci.edu/dataset/891/cdc+diabetes+health+indicators 
3 https://archive.ics.uci.edu/dataset/2/adult 
4 https://www.kaggle.com/datasets/sooyoungher/smoking-drinking-dataset 
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2.2. Experimental Setup 

We utilize the Pythia LLM models (14M, 31M, 70M, 160M and 1B) with the Tabula 

Framework – a further development of the GReaT Framework [2,3,8]. We employ token 

sequence compression and use left padding [2]. The sampling process of the LLM 

models is conditioned on the binary target variable, which serves as a start token (e.g., 

"Class 0" or "Class 1"). As the GAN competitor, we apply CTGAN, a framework to learn 

the distribution of tabular data [4]. It utilizes mode-specific normalization and a 

conditional generator to generate rows. Values for the model hyperparameters are taken 

from the respective original papers and settings in the corresponding software 

implementations. The model hyperparameters, sourced from their original papers and 

software implementations, are applied. Both LLMs and CTGAN are trained for 400 

epochs, with their respective original batch sizes. We train each Pythia LLM model based 

on either a randomly initialized state (in this case, pre-training is conducted via next-

token prediction) or on a pretrained starting point (in this case, fine-tuning is conducted). 

This approach enables us to evaluate the significance of the architecture alone versus the 

presence of a language model. We employ random sampling to generate training datasets 

from the original data, with each containing 500, 1000, 2500, and 5000 rows, 

respectively. From the remaining original data, we randomly sample corresponding test 

data with the same size. For assessing the quality of the generated synthetic data, we use 

the classification accuracy on the test set that is achieved by a random forest model 

trained on the synthetic train set. The average random forest accuracy score and its 

standard deviation across 100 runs of synthetic data generation for each trained model 

variant is reported. 

3. Results 

Table 2 contains the results for Original (random forests are trained on the original 

training data), CTGAN as well as LLMs with different parameter sizes. When comparing 

Original and CTGAN models with LLMs it becomes clear that the LLM based approach 

surpasses them across the three different datasets. Some models even slightly surpass the 

utility of the original data. This is a sign that the models do indeed not only learn the 

structure of the of the original datasets during training but rather learn the underlying 

distributions as well as the correlations between the variables. The overall trend indicates 

that LLM models tend to perform better in capturing complex joint probability 

distributions as the number of parameters increases. The same holds true for the sample 

size of the training dataset, suggesting a positive correlation between both factors. 

An interesting observation can be made regarding the CDI and SDD datasets: if the 

datasets contain a large portion of categorical columns, it appears that it is not necessary 

to employ an LLM model with high complexity. This observation suggests that 

depending on the dataset and the types of features it contains, smaller LLMs may be 

sufficient. Even though GANs have significantly faster training and generation times 

compared to LLM-based approaches, it's important to note that the training time for both 

increases with the sample size provided for training. Whether randomly initialized and 

subsequently fine-tuned LLMs exhibit better accuracy scores than models that were pre-

trained and then fine-tuned on the specific dataset cannot be determined definitively. 
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Table 2. Machine learning utility results for synthetic data generation include the mean accuracy and standard 

deviation obtained using random forest for all datasets. For LLMs, “a)” signifies models that were randomly 

initialized and subsequently trained, while “b)” indicates models that were pre-trained and then fine-tuned on 

the dataset. Best results for a) and b) are given in bold. 

Dataset Original CTGAN Pythia 14M 
 

Pythia 31M Pythia 70M Pythia 
160M 

Pythia 1B 

ADT 

(500)  

.839 .750±.001 a).731±.038 

b).784±.018 

a).766±.016 

b).769±.019 

a).797±.012 

b).792±.017 

a).803±.011 

b).800±.016 

a).801±.016 

b).809±.011 

ADT 

(1000) 

.849 .750±.016 a).758±.013 

b).783±.019 

a).785±.015 

b).785±.018 

a).807±.016 

b).809±.016 

a).819±.012 

b).817±.012 

a).819±.011 

b).821±.012 

ADT 

(2500) 

.856 .793±.007 a).779±.019 

b).798±.021 

a).813±.012 

b).814±.015 

a).820±.015 

b).819±.021 

a).826±.017 

b).825±.016 

a).824±.018 

b).829±.014 

ADT 

(5000) 

.856 .821±.004 a).809±.019 

b).822±.017 

a).830±.006 

b).832±.012 

a).834±.013 

b).837±.010 

a).841±.012 

b).839±.008 

a).842±.005 
b).841±.010 

CDI 

 (500) 

.861 .860±.000 a).860±.001 

b).859±.002 

a).860±.001 

b).860±.004 

a).860±.002 

b).859±.003 

a).862±.003 

b).859±.003 

a).861±.003 

b).861±.002 

CDI 

(1000) 

.861 .860±.000 a).859±.001 

b).857±.004 

a).860±.002 

b).858±.003 

a).858±.003 

b).859±.003 

a).859±.003 

b).859±.003 

a).861±.003 

b).861±.002 

CDI 

(2500) 

.862 .840±.004 a).860±.002 

b).858±.003 

a).860±.003 

b).860±.003 

a).861±.002 

b).860±.002 

a).862±.003 

b).861±.002 

a).859±.003 

b).861±.002 

CDI 

(5000) 

.862 .860±.000 a).855±.003 

b).861±.003 

a).863±.002 
b).862±.003 

a).862±.002 

b).863±.002 
a).862±.002 

b).862±.003 

a).862±.002 

b).861±.002 

SDD 

(500) 

.694 .473±.036 a).606±.017 

b).666±.010 

a).664±.009 

b).670±.007 

a).670±.007 

b).675±.007 

a).678±.006 

b).665±.005 

a).678±.007 

b).679±.005 

SDD 

(1000) 

.699 .556±.028 a).659±.013 

b).675±.008 

a).678±.005 

b).681±.005 

a).681±.004 

b).682±.005 

a).680±.005 

b).680±.005 

a).685±.005 

b).683±.004 

SDD 

(2500) 

.709 .676±.002 a).679±.004 

b).687±.003 

a).689±.004 

b).690±.003 

a).689±.004 

b).689±.004 

a).687±.004 

b).686±.003 

a).690±.004 

b).692±.004 

SDD 

(5000) 

.711 .568±.006 a).689±.003 

b).695±.003 
a).695±.003 
b).689±.003 

a).693±.004 

b).693±.003 

a).692±.003 

b).694±.003 

a).694±.003 

b).693±.003 

4. Discussion and Conclusions 

Our benchmark shows that LLM models generally tend to perform marginally better as 

the number of parameters increases, as well as with the volume of data they are pre-

trained or fine-tuned on. The datasets considered represent different levels of complexity, 

which was crucial to assess the context-dependency of the different synthetic data 

approaches. For instance, on the CDI or the SDD dataset, increasing the number of 

parameters does not improve results by a large amount. Further LLMs seem to produce 

better results when given limited training data compared to the reference CTGAN 

method. This insight could serve as a valuable guide for practitioners, who want to 

augment their data with only a limited number of real-world data at hand. A major 

drawback of LLMs, especially the larger ones, is their high demand for specialized 

machine learning hardware. For instance, the largest model, with 1 billion parameters, 

required approximately 40GB of VRAM spread across two GPUs for training, while 

even the smallest 14M parameter model needed 22GB of VRAM. 

The target variable plays a central role in autoregressive LLM models, potentially 

making them less suitable as general-purpose applications, not focusing on specific 

classification tasks. For LLMs to address this, they would need to incorporate feature 

permutation during model training. While this is technically feasible, it may not be 

practical due to efficiency concerns [2,3]. In contrast, GANs are generally agnostic to 

the sequence in which variables are learned. The comparison suggests that the approach 

to conditioning is not arbitrary but rather significant. Further, the assertion in the 

literature that randomly initialized models outperform pretrained LLMs could not be 

substantiated. Addressing this would necessitate conducting more extensive tests and 

conducting specific research into initialization methods for LLMs. It's important to note 

that the type of data a model is pre-trained on can significantly impact the performance 
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of the resulting fine-tuned model. Had the Pythia LLMs been trained on a domain-

specific dataset rather than the 800G pile dataset [9], different results might have been 

achieved [2]. This could significantly boost performance, as relationships between 

variables or concepts would already be encoded in the pre-trained model. In cases where 

domain-specific datasets for pre-training are unavailable, it is sensible to utilize a 

randomly initialized LLM. This approach avoids the need for the LLM to unlearn 

contextual information from the pre-training. 

Depending on the use case, feature permutation might become necessary if different 

targets variables should be allowed, which would lead to significantly longer training 

times. Hence, the drawbacks of prolonged training times and the need for demanding 

hardware would likely outweigh the benefits in practice. As a general rule, it's worth 

noting that when dealing with the complexity of tabular data, opting for larger models 

may not be rational if the performance of smaller models is sufficient. For actors with 

limited computational resources, this means enhancing the utility of statistical analysis 

through augmented real-world data. Further research should be conducted to analyze the 

potential of LLMs for synthetic tabular data generation compared to other emerging 

technologies, such as diffusion models [10]. 
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