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Abstract. In the field of medical data analysis, converting unstructured text 
documents into a structured format suitable for further use is a significant challenge. 
This study introduces an automated local deployed data privacy secure pipeline that 
uses open-source Large Language Models (LLMs) with Retrieval-Augmented 
Generation (RAG) architecture to convert medical German language documents 
with sensitive health-related information into a structured format. Testing on a 
proprietary dataset of 800 unstructured original medical reports demonstrated an 
accuracy of up to 90% in data extraction of the pipeline compared to data extracted 
manually by physicians and medical students. This highlights the pipeline's potential 
as a valuable tool for efficiently extracting relevant data from unstructured sources.  
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1. Introduction 

In medical informatics, processing unstructured text data while ensuring data protection 

and confidentiality is a major challenge [1]. This study introduces a solution using open-

source Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG) 

architecture [2] to efficiently transform this data into a structured format. By evaluating 

the automated pipeline on numerous medical documents, we aim to showcase its 

effectiveness in extracting and structuring data, as a step forward in health informatics. 
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2. Methods 

Our method centers on a local deployed automated pipeline using different OSS-LLMs 

with RAG architecture to process German medical documents, extract and structure 

important data, and avoid external data transfer to ensure privacy. The pipeline works in 

stages: 1) it inputs unstructured reports, 2) translates them from German to English using 

an OSS translation model, 3) uses RAG to identify and retrieve information, and 4) then 

converts these snippets into structured data for downstream use. To assess the accuracy 

of the data extraction process we compared the extracted data with manually extracted 

information by medical experts, which served as the ground truth. 

3. Results 

We evaluated real life private datasets of 800 unstructured medical reports to assess 

effectiveness of the pipeline. Figure 1 displays initial results for weight and age.  
 

 

Figure 1. Residual analyses for weight (A) and age (B) extraction from German medical reports. Y-axis 

displays the expected values, and X-axis shows the automatically extracted information from the texts. 

4. Discussion 

First results show that an automated pipeline can efficiently convert unstructured medical 

documents into structured data with up to 90% accuracy. This highlights the 

effectiveness of using OSS-LLMs with RAG for high accuracy data extraction while 

emphasizing strong data protection. Challenges such as improving the model's handling 

of various document formats and medical terms are part of future research. 

5. Conclusions 

The initial result indicates that the automated pipeline is efficient for converting 

unstructured medical data. By initially translating the text, the approach can be tailored 

to accommodate various languages, potentially broadening its applicability globally. 
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