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Abstract. Multi-objective optimization holds particular significance for medical 

applications, wherein enhancing sensitivity is crucial to avoid costly missed 
diagnoses, and maintaining high specificity is imperative to prevent unnecessary 

procedures. In particular, when optimizing machine learning architectures for 

clinical diagnostics, it becomes essential to balance target quality measures such as 
accuracy, sensitivity, and specificity. Therefore, we developed MOOF, a multi-

objective optimization framework that employs NSGA-II and TOPSIS to 

simultaneously optimize the model parameters of three selected ML algorithms: 
random forest, support vector machine, and multilayer perceptron. Finally, we 

evaluated the performance of the optimized MOOF models compared to gold 

standard methods such as multi-score grid search and single objective optimizations. 
Our results show that MOOF generally outperforms other approaches by inherently 

providing optimal solutions, representing the trade-offs between the target 

objectives. In conclusion, the study supports the importance of multi-objective 
optimization in medical informatics, with MOOF as a powerful tool for precise ML 

models, potentially improving patient care and clinical decision support systems. 
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1. Introduction 

Previous research has shown the great potential of Machine Learning (ML) for providing 

solutions in the healthcare sector [1–3]. This requires the integration of comprehensive 

patient data, including medical history, laboratory, vital signs, image, and clinical data. 

Which, in the best case, are analyzed together to diagnose and treat a patient efficiently.  

The record of the corresponding final diagnosis of the patient is used mainly to monitor 

treatment effectiveness but also can be used to develop and train machine learning 

models. Common goals for ML in healthcare are the prediction of the most probable 

diagnoses, optimal therapies, and risk estimation [4,5]. Essential for this task is to 

guarantee the robustness of the model performance when transferred to new data at 

different locations. In ML, the performance of a trained model is usually estimated by 

specific metrics, such as accuracy. However, other metrics are of more relevant for 

clinical applications, such as sensitivity or specificity.  For instance, a high-sensitivity 
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ML model can be prioritized over specificity if early detection and treatment of patients 

with the disease is crucial, boosting recovery chances [6,7]. Therefore, specialized multi-

objective optimization (MOOP) techniques have been developed to simultaneously 

maximize multiple quality measures such as accuracy sensitivity and specificity. 

However, finding the best solutions can be, complex, and time-consuming. Its nature of 

providing not only one but a front of optimal solutions has produced growing attention 

to this method in solving problems in healthcare [6–10], for instance, simultaneous 

optimization of the allocation of healthcare resources as well as minimizing time and 

costs, as required during the COVID-19 pandemic [9]. In this work, we aim to evaluate 

potential performance improvement of the newly developed MOOP framework in 

comparison against the gold standard approach a multi-scoring grid search. Therefore, 

we compare the performance of both approaches based on patient data from the 

Cleveland heart failure data set [11] focusing on the three main metrics, accuracy, 

sensitivity and specificity.  

2. Material and Methods 

To benchmark our hypothesis that the employment of the developed multi-objective 

optimization strategy allows improved performance we evaluated it on the Cleveland 

heart failure data set [11] which was also employed in the benchmark study evaluating 

MO techniques [12] and used for comparisons with the approach proposed in this work. 

The Cleveland data set consists of 303 samples and 14 attributes of patient clinical data, 

and their corresponding outcome of having or not a heart attack. We developed the Multi-

Objective Optimization Framework (MOOF) that consists of three phases, (1) modeling, 

(2) optimization, and (3) the selection phase (Figure 1).  

 

Figure 1. Overview of the proposed framework approach 

In the modeling phase, we are using three ML models, including random forest, 

support vector machine, and multilayer perceptron. In the second phase, we optimized 

the ML models using NSGA-II [13], which is well-known to handle complex 

optimization problems. Our setting allows us to identify a set of optimal solutions 

amongst many models while simultaneously optimizing the model parameters for 

multiple objectives. This property makes this method a powerful tool for tailoring the 

design of solutions in healthcare [14]. We focus on improving three objectives: accuracy, 

sensitivity, and specificity. These criteria are important for evaluating the performance 

of predictive models in medical diagnosis, where false negatives and positives can have 

significant consequences. The optimization process identifies a set of optimal solutions 
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that provide a trade-off between the three predefined objectives. Each solution 

corresponds to a specific set of model parameters and resulting quality metrics; these 

represent the so-called Pareto front. These optimal solutions provide a comprehensive 

understanding of the behavior of model and can be analyzed based on specific research 

goals. There are multiple ways to extract the best solution from a set of optimal solutions. 

In phase three, we employed the TOPSIS (Technique for Order of Preference by 

Similarity to Ideal Solution) method [15], which evaluates the relative closeness of each 

solution to an ideal solution based on a predefined criteria. We used it to rank solutions 

and select the one that is closest to the ideal solution. For comparability, we selected the 

same metric weights based on the study by Lin and Yeh [15]. Finally, we compare the 

quality of the optimal solution identified by MOOF with multi-scoring grid search (GS) 

as the gold standard and the results of a benchmark study by Nalluri et al. employing 

Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Firefly 

Algorithm (FA) that employed a weighted metrics approach to address several objectives 

simultaneously [12]. 

3. Results 

In this study, we utilized the NSGA-II algorithm to enhance the performance of three 

distinct ML models, namely RF, SVM, and MLP, focusing on concurrently improving 

accuracy, sensitivity, and specificity. For each ML method, NSGA-II identified a set of 

optimal solutions. Demonstrating the effectiveness of this optimization process in 

comparison to other approaches, we provide a detailed examination of the results based 

on the MLP model (Figures 2 and 3), noting that similar patterns and compromises were 

evident in the RF and SVM models as well. 

  
       Figure 2. Pareto front plot for MLP                          Figure 3. ROC curve plot for MLP 

The Pareto front in Figure 2, effectively illustrates the multi-faceted trade-offs involved, 

offering a clear visual representation of how various optimized solutions manage to 

balance the three key objectives. Moreover, the robustness of these solutions is 

quantitatively validated by the Area Under the Receiver Operating Characteristics (ROC) 

curves (AUC), indicating a strong performance in the range of 0.87 to 0.91. This 

demonstrates NSGA-IIs ability to accurately differentiate patient outcomes in heart 

failure scenarios. For MLP, MOOF showed the best accuracy of 86.81% compared to 

the baseline model (79.10%) and GS (83.06%) see Table 1. Sensitivity reached 90.00%, 
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surpassing outcomes from PSO, GSA, and FA algorithms. This underlines MOOF’s 

efficiency in finely tuning the balance between sensitivity and specificity, critical for 

clinical decision-making processes. Similar to the MLP analysis MOOF showed superior 

accuracy of 83.52% for the optimized SVM model, see Table 2. Remarkably, when 

compared to PSO, GSA and FA, MOOF showed a higher sensitivity of 92%, 

demonstrating a greater increase than the single-objective approaches. The performance 

of the RF-MOOF model of (ACC 89.01%) exceeded the baseline (ACC 80.84%) and GS 

(ACC 81.95%) optimized models. However, the GS demonstrated the higher sensitivity. 

The specificity remained strong at 85.37%, despite challenges in maintaining a high true 

negative rate alongside improvements in true positive detection. 

Table 1. Performance Metrics for MLP with MOOF with GS and reference paper 

Objective Baseline GS PSO GSA FA MOOF 

ACC 79.10 83.06 85.14 84.15 85.80 86.81 

SEN 79.42 93.33 85.60 84.21 87.5 90.00 
SPE 78.61 79.35 84.79 84.11 84.57 82.93 

Table 2. Performance Metrics for SVM with MOOF with GS and reference paper 

Objective Baseline GS PSO GSA FA MOOF 

ACC 78.50 82.70 83.49 82.83 83.49 83.52 

SEN 82.61 99.73 82.38 82.18 82.38 92.00 

SPE 73.58 79.20 85.03 83.72 85.03 73.17 

Table 3. Performance Comparison for MOOF 

Objective Baseline GS MOOF 
ACC 80.84 81.95 89.01 

SEN 85.22 76.39 92.00 

SPE 75.67 87.83 85.37 

4. Discussion and Conclusions 

In this study, we designed MOOF, a framework for multi-objective optimization to refine 

ML models for clinical predictions by simultaneously tuning accuracy, sensitivity, and 

specificity and allows selecting an optimal solution from the Pareto front. This is 

particularly relevant for medical diagnostics, where e.g., sensitivity must be improved in 

situations where missed diagnoses are costly, and high specificity is essential to avoid 

unnecessary procedures. Our results demonstrate that NSGA-II generally outperforms 

other approaches such as multi-scoring GS, PSO, GSA and FA by inherently providing 

optimal solutions, representing the trade-offs between the target objectives. For instance, 

it achieved high sensitivity without degrading model performance, proving its superiority 

over single-objective optimizers as presented by Nalluri et al [12]. In contrast, multi-

scoring GS outperformed the MOOF selected MLP and SVM models concerning 

sensitivity, however, generally showed worse specificity, while the MOOF selected RF 

model showed superior accuracy and sensitivity. Furthermore, the principal benefit of 

the framework lies in its ability to balance between various performances metrics and 

provide a range of solutions to meet different medical conditions. NSGA-II's flexibility 

across different models highlighted its potential in handling complex clinical diagnosis 

and treatment planning issues. We expect to improve this property by using NSGA-III, 

as shown in other studies [16]. Moreover, the distinct sets of optimal solutions found for 

the SVM, RF, and MLP models highlight flexibility of NSGA-II across different types 

of model architectures and their unique ways of processing clinical data. On the one hand, 
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this flexibility can be a strength for overcoming the complex clinical diagnosis and 

treatment planning issues. On the other hand, MOOF's performance depends on fine-

tuning a multitude of parameters like population size and crossover probability in NSGA-

II as well as model specific parameters, introducing additional complexity and 

potentially delaying rapid deployment. Therefore, in future work we aim to test MOOF 

on various datasets and incorporate NSGA-III to improve efficiency and solution. In 

conclusion, the study shows the importance of multi-objective optimization in medical 

informatics, potentially improving patient care and clinical decision support systems. In 

conclusion, the study shows the importance of multi-objective optimization in medical 

informatics, potentially improving patient care and clinical decision support systems. 
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