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Abstract. This paper explores the critical role of Interoperability (IOP) in the 

integration of Artificial Intelligence (AI) for clinical applications. As AI gains 

prominence in medical analytics, its application in clinical practice faces challenges 
due to the lack of standardization in the medical sector. IOP, the ability of systems 

to exchange information seamlessly, emerges as a fundamental solution. Our paper 

discusses the indispensable nature of IOP throughout the Data Life Cycle, 
demonstrating how interoperable data can facilitate AI applications. The benefits of 

IOP encompass streamlined data entry for healthcare professionals, efficient data 

processing, enabling the sharing of data and algorithms for replication, and 
potentially increasing the significance of results obtained by medical data analytics 

via AI. Despite the challenges of IOP, its successful implementation promises 

substantial benefits for integrating AI into clinical practice, which could ultimately 
enhance patient outcomes and healthcare quality. 
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1. Introduction 

Artificial Intelligence (AI) is emerging as a state-of-the-art technology for data analytics 

in the medical field [1-6]. It has demonstrated groundbreaking performance in various 

applications, from medical image analysis to diagnosis predictions and drug 

development [7]. This development is driven by a surge in digital data collection, 

providing the evidence necessary to train AI models. The technology relies on large, 

extensive datasets to produce reliable results. Thus, analyzing medical data from diverse 

sources is imperative to maximize the full potential of AI. 

However, while studies have produced convincing results, adaptation of AI in 

clinical practice has been slow [7-10]. This is due to a lack of standardization in the 

medical sector. Creating comprehensive datasets requires combining data from various 

systems and locations, such as routine data, specialized documentation, molecular 

evidence, and outpatient data. However, data from different sources is often 

unstandardized, unstructured, and ambiguous, leading to incompatibility and imprecision. 

Restoring the integrity of a combined dataset requires significant effort, which hinders 

the research process. [11] 

Interoperability (IOP) is the ability of two or more systems to collaborate and 

exchange information in a coordinated manner [12]. Interoperable data are data with 
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unambiguously defined vocabularies, standardized formats, and agreed-upon protocols,

enabling shared semantic and syntactic understanding. IOP is fundamental for 

developing and training AI algorithms and models in digital medicine by facilitating the 

joint processing of data from disparate sources.

Our paper provides an in-depth definition of IOP, dividing it into technical, syntactic,

semantic, and organizational Interoperability. We further introduce the FAIR principles 

and the Data Life Cycle. Afterward, we discuss why IOP is indispensable for the 

application of AI in digital medicine. During this discussion, we focus on the different 

stages of the Data Life Cycle (DLC) and how IOP and the use of standardized data 

positively impact them. Finally, we address the challenges faced by IOP and give an 

outlook on the potential benefits of successful clinical AI applications.

2. Background and Methods

Interoperability (IOP) can be divided into technical, syntactic, semantic, and 

organizational IOP [13, 11]. Technical IOP is achieved by shared protocols such as 

HTTPS or REST for data exchange via the internet. Syntactic IOP determines data 

formats and structures, e.g., the widespread IOP standard Fast Healthcare 

Interoperability Resources (FHIR), which can be represented and exchanged via the 

JSON or XML formats. Another notable example is Observational Medical Outcomes 

Partnership (OMOP) Common Data Model (CDM). Semantic IOP specifies an 

unambiguous vocabulary of medical terms consisting of agreed-upon terminologies and

ontologies. Examples of semantic IOP standards are the terminology SNOMED CT, the 

most comprehensive collection of terms for clinical data exchange [13], LOINC, a 

standard for disseminating laboratory test results and the rare disease ontology ORDO, 

which provides a vocabulary and defines relationships for terms in the field. 

Organizational IOP is defined as the cooperation of stakeholders, ensuring universal 

adaptation of standards. It is to be noted that IOP is only effective if all participating 

entities agree to the implementation of uniform standards and provide interfaces between 

standards when no unanimous agreement can be reached [11]. 

The FAIR principles (Findability, Accessibility, Interoperability, and Reusability)

set criteria to enable the discovery and reuse of research data by machines and humans. 

In summary, they state that data must be enhanced by unique identifiers and detailed 

meta-data and be available via standard protocols in standardized formats [14].

Figure 1. Data Life Cycle for Healthcare Data.
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The Data Life Cycle (DLC) is a widespread concept to manage data flow in an 

organization from generation to destruction [15]. Data is vital for successfully 

implementing AI; thus, managing it throughout its lifespan is crucial. Over the years, 

definitions of the DLC, varying in detail and number of steps, have been published, 

ranging from four [16] or five [17] to seven [18] steps. We decided to include seven steps 

in a DLC for healthcare data based on the FAIR principles and data requirements for AI. 

As shown in Figure 1, it contains the steps of data generation, collection, storage, 

processing, analysis, interpretation, and sharing. 

3. Results and Discussion 

This discussion will follow data through the Data Life Cycle (DLC), demonstrating how 

IOP is essential at every step to prepare for the successful application of AI. The Section 

concludes by addressing the potential challenges of IOP. 

Relevant healthcare data can come in various forms, including anamneses 

documented by physicians and molecular evidence such as genetic findings and 

laboratory results. Detailed and extensive information is crucial for thorough analysis via 

AI to support empirical medical decision-making. However, when combining data from 

such varied contexts, researchers often face heterogeneous terms, requiring significant 

effort and expertise to interpret their syntax and semantics. 

The first step in the DLC is the generation of relevant healthcare data. IOP is critical 

in the subsequent data collection and storage stages. If healthcare data were collected 

and stored in standardized formats using unambiguous terminology, they could be used 

more effectively and efficiently in later life cycle phases. This is not the case in routine 

practice, where data collection happens in heterogeneous formats, provoking extensive 

preprocessing to ensure precision, integrity, and correctness when combining data from 

different sources. While interoperable data capture solutions exist in clinics, these often 

require medical professionals to document the same information doubly, e.g., for 

reimbursement and research purposes. Instead, IOP standards can be integrated into 

documentation applications, e.g., via terminology servers [19], so medical professionals 

can enter information in natural language and select from a list of terms, internally 

represented by codes. This can streamline data entry, allowing medical professionals to 

focus on their field of expertise. Simultaneously, it ensures that data is validated, precise, 

and interoperable, eliminating the need for redundant documentation. 

During the processing phase, data is cleaned and otherwise prepared for analysis. At 

this stage, healthcare data is often in unstandardized formats, such as tables with local 

specifications or doctor’s letters in natural language. Thus, processing requires the most 

significant time during the DLC. Local code systems must be mapped onto interoperable 

terminologies to combine data while maintaining medical meaning. During this process, 

ambiguities must be resolved, and the results must be validated to prevent the 

introduction of errors or inconsistencies. This laborious process inhibits research and 

care and could be avoided considerably by employing interoperable data. IOP 

standardizes data structure, format, and medical vocabulary, as well as ensures high data 

quality, facilitating analysis and reducing preprocessing. 

It could be argued against the necessity of standardization since AI, in the form of 

Large Language Models (LLMs), can extract medical meaning from unstructured text 

[20]. However, this is a transitional solution since LLMs are susceptible to hallucination 

[20]. Further, their development, testing, and validation require significant effort. This 
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effort could be invested in data analysis for knowledge generation if the data were 

recorded interoperably.  

In medical studies, AI is emerging as a cutting-edge method for data analysis. 

Utilizing interoperable data sources can facilitate the development of AI algorithms by 

predefining the data structure. Thus, machine learning algorithms can be developed 

before the data is received or even collected, enabling parallelization. Furthermore, IOP 

can counteract the replication crisis of modern medicine [21]. When writing AI with data 

from interoperable sources instead of local specifications, analysis pipelines can more 

easily be shared to facilitate replication. 

Moreover, IOP can increase the significance and impact of results obtained via AI. 

One factor is the structure IOP introduces into the data, which inherently encapsulates 

valuable information. Studies have shown that the success of AI depends on the 

representation of the data it is trained on [22]. In addition, algorithms based on 

interoperable data can include information from a broader range of locations; if necessary, 

this can involve federated learning. The resulting, larger training datasets can increase 

the performance of AI based on the law of large numbers [23, 24]. This could especially 

benefit the research into rare diseases, which is often held back by small sample sizes 

due to low prevalence in local populations [25]. 

Data sharing, the final step of the DLC, is crucial to empirical research, as stated by 

the FAIR principles. As part of these principles, IOP plays a fundamental role in enabling 

the replication of studies by making data and algorithms accessible and reusable. Data 

sharing contributes to the democratization of medicine by allowing for seamless 

information exchange between medical professionals and patients. Moreover, access to 

their data empowers patients to actively participate in medical decisions. 

While IOP holds great potential for the application of AI, it does not come without 

challenges. The large healthcare sector has diverse stakeholders and a challenging 

environment for broad consensus. Because of financial barriers and resistance to 

changing practices, providing incentives for applying IOP standards is essential. 

Additionally, institutions must contend with regulatory hurdles; thus, unified legislation 

must be implemented to enforce IOP in the sector.  

4. Conclusions 

Although AI has shown promising results in medical studies, adaption in clinical practice 

has not kept up with expectations. Medical data is collected on most aspects of a patient's 

health, its reliable aggregation for AI applications in clinical practice is currently limited 

by a lack of IOP in the medical field. We demonstrated that implementing IOP can 

substantially facilitate the development of AI applications at every stage of the Data Life 

Cycle and support more extensive studies with more significant results. Thus, IOP is 

instrumental in unlocking the full performance of AI and holds the potential to bring AI 

into clinical practice.  

The potential results on patient outcomes of applying AI in clinical practice are 

immense. Studies already produced highly accurate AIs that predict diagnoses, 

recommend suitable treatment, and support decision-making by physicians. Bringing 

these technologies into the clinic can shorten the path to patient diagnosis and increase 

treatment quality. To quantify the benefits of using interoperable data for the application 

of artificial intelligence in clinical applications, we propose a systematic review of the 

literature as future work. 
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