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Abstract. Extensive research has been conducted on time series and tabular data in 

the context of classification tasks, considering their distinct data domains. While 
feature extraction enables the transformation of series into tabular data, direct com-

parative comparisons between these data types remain scarce. Especially in the do-

main of medical data, such as electrocardiograms (ECGs), deep learning faces chal-
lenges due to its lack of easy and fast interpretability and explainability. However, 

these are crucial aspects for a wide and reliable adoption in the field. In our study, 

we assess the performance of XGBoost and InceptionTime on ECG features and 
time series data respectively. Our findings reveal that features extracted from ECG 

signals not only achieve competitive performance but also retain advantages during 

training and inference. These advantages encompass accuracy, resource efficiency, 
stability, and a high level of explainability. 
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1. Introduction 

In recent advancements, deep learning, especially convolutional neural networks (CNNs), 

have witnessed significant adoption for ECG classification [1], while traditional machine 

learning techniques have seen a general decline in focus. Previous research shows that 

traditional tree ensemble methods are often superior to deep learning approaches on tab-

ular data [2,3], however, these analyses only cover the same domain. A recent study [4] 

shows that a CNN outperforms classification built on top of automated Feature Extrac-

tion, in the field of ECG data. However, our study aims to assess the performance of 

time-series data of ECGs against specialized extracted features based upon UniG [5]. 

Compared to time-series data, feature extraction is less susceptible to batch effects, re-

duces dimension and therefore speeds up training [6]. We show that specialized feature 

extraction combined with an explainable machine learning classifier outperforms deep 

learning methods. Additionally, these features provide direct insights, without the need 

for intrinsic waveform analysis. This enables the use of explainable clinical decision 

support systems, with benefits of machine learning based methods, while being transpar-

ent in the decision process. 
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2. Methods 

PTB-XL v1.0.2 [7–9] and the associated PTB-XL+ v1.0.1 [10,11] database, which cover 

over 21801 ECGs with annotations and features, are used to train and evaluate machine 

learning models. Each ECG is 10 seconds long, with 12-leads and a sampling rate of 

500hz. We split the database according to the supplied stratified folds, utilizing fold ten 

for the computation and generation of results for each method. This allows fair and com-

parable evaluation between all methods. We conduct a multiclass-classification using the 

annotated superclasses of the dataset: Myocardial Infection, Conduction Disturbance, 

Hypertrophy, ST/T-Changes and normal. 

For XGBoost [12], we use tabular based data, which includes all ECGs with ex-

tracted features from the University of Glasgow (UniG) ECG analysis program [5], based 

on PTB-XL+ (Table 1). An extensive Halving Grid Search was conducted using the fol-

lowing parameter-space with a 5-fold cross-validation using sample-weights and bal-

anced accuracy as optimization parameter: 

Table 1. XGBoost optimization parameters applied in a cross-validation Halving Grid Search. 

parameter max_depth n_estimators min_child_weight gamma colsample_bytree 

values [1, 2, 3, 4, 5, 6] [50, 100, 150, 500] [1, 5, 10, 15] [0.5, 1, 1.5] [0.4, 0.6, 0.8] 

 

InceptionTime [13] is trained on an 80/20-split for a train- and evaluation-dataset of 

the raw 12-lead ECG time series data. As not all time series have extracted features in 

the extended dataset, we show the performance on the complete and the matched subset 

of UniG-feature data. The ECGs are normalised with a global mean/std scaling. The used 

optimizer is AdamW with weighted CrossEntropyLoss and a ReduceLRonPlateu-Sched-

uler based on the validation loss. We train InceptionTime with different parameters, such 

as the number of filters (32, 48, 64), batch-sizes (8, 16) and initial learning rate (1e-3, 

1.5e-3, 1e-4), three times each for up to 20 Epochs. The best performing model is pre-

sented in this work (n_filters=48, batch_size=8, lr=1.5e-3). 

Table 2. Number of available data points in the combined training and evaluation dataset for each model, along 
the distribution across different classes. The feature chance level indicates the percentage of data points in the 

extended dataset with extracted features. 

Model Myocardial 

Infarction 

Conduction 

Disturbance 

Hypertrophy ST/T-Change Normal 

XGBoost (UniG) 
InceptionTime (Fair) 

796 576 215 871 3692 

InceptionTime (All) 1673 1276 455 1893 8159 

Available annotations 
(average 46.25%) 

47.58% 45.14% 47.25% 46.01% 45.25% 

 

We compute a Receiver-under-Operator-Curve (ROC), outlining the performance 

of sensitivity vs. specificity under a certain threshold. Due to conducting multiclass-clas-

sification, we compute the micro-weighted Area under Curve (AUC) to account for class 

imbalances, and also outline the macro-AUC and balanced accuracy (BACC). We also 

compute combined approaches for the whole dataset, as well as for subsets of features 

only (Table 2). The whole dataset is computed by using UniG predictions where appli-

cable, and otherwise InceptionTime (both variants). For the combined subset model, we 

use the average of both, XGBoost and InceptionTime. To generate explainability-plots 
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for XGBoost, we use SHAP [15] to compute example plots for individual assessments 

with the UniG-feature based model. 

3. Results 

3.1. Classification Results 

Table 3 outlines the balanced accuracy, weighted-macro and -micro One-vs-Rest ROC 

for XGBoost trained on different features. Figure 1 plots the ROC for all three models. 

It can be clearly outlined that UniG features result in higher performance than Inception-

Time on the same data. InceptionTime performs worse in BACC as well as in both AUC 

metrics. As shown in previous work [16], this model achieves comparable multiclass 

performance without extensive finetuning optimizations. We also see a marginal better 

performance of combining the feature-based predictions, if available, with a time-series-

based classification model for the remainder data. 

Figure 1. Micro-weighted-averaged One-vs-Rest Receiver-under-Operator-Curve (ROC) outlining the per-
formance of all models and their respective Area-Under-Curve (AUC). UniG-feature subset (left) and com-

plete test set performance (left) and with their corresponding machine learning models. 

 

Table 3. Performance metrics for XGBoost and InceptionTime using the corresponding features. Highest per-

forming metrics are bold with the follow-up underlined. The subset indicates if they were trained and evaluated 

on the same data points which are in the UniG-feature subset. 

                       weighted OvR AUC 

Features Subset BACC macro micro 

UniG x 0.709 0.926 0.922 
InceptionTime (Fair) x 0.644 0.882 0.882 

Combined (UniG + Fair) x 0.691 0.921 0.919 

InceptionTime (All)  0.664 0.907 0.897 

Combined (UniG + Fair)  0.682 0.902 0.903 
Combined (UniG + All)  0.681 0.902 0.898 
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3.2. Explainability 

While InceptionTime explainability can solely rely on graphical representation of the 

time-series, XGBoost can be well analysed using feature importance such as SHAP. Fig-

ure 2 represents the local feature importance for two distinct classes based on two sam-

ples. This analysis can be conducted for each class, and each prediction separately, which 

allows high transparency and explainability. 

 

Figure 2. SHAP waterfall plot for two example data points. The features outline their corresponding impact 

on the models decision for their respective classes Conduction Disturbance (left) and ST/T-Change (right). 

4. Discussion 

Another aspect, not numerically evaluated, is the training-time, -resources and -stability. 

While XGBoost can be optimised comparably fast, even on a CPU, deep learning re-

quires much more hardware sophistication. Additionally, deep-learning, which inher-

ently relies on random initialization and numerical stability, varies a models performance 

based on the number of features and complexity. It also outlines its stability, as our find-

ings assessed performance differences of more than 6% for InceptionTime using the 

same training data, while XGBoost remained more stable and reproducible using the 

same parameters. Additionally, studies have demonstrated the occurrence of batch ef-

fects related to the capturing device and calibration [17]. Computing features which are 

less prone to these effects, could improve the inter-dataset classification performance, 

addressing a problem common in other methods. 

However, as stated, not all ECGs have computed features, which can limit the ap-

plicability of this approach. This could be the case, as no important markers, such as 

QRS-points, could be detected based on the used algorithms. If they can be computed, 

they exhibit better performance in our findings, while deep-learning is more feasible on 

a wider variety of abnormal ECGs which hinder feature extraction. Nonetheless, a com-

bined approach shows better performance than a model trained on a larger number of 

samples, as its performance uplift is limited. The explainability achieved by using fea-

tures also outlines the potential for use in the field, as the decisions are easier to trace 

and validate by experts. It could help clinicians to assess a diagnosis faster while being 

based upon reliable and meaningful attributes. 
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5. Conclusions 

Our work outlined that extracted features of ECG data is competitive to an extensively 

used deep learning model, while maintaining several advantages. The reproducibility, as 

a one of the key factors for open science, its fast convergence and detailed explainability 

are crucial benefits for researchers. The feature-based attribution is retractable and allows 

full transparency. These key elements empower clinicians to assess the findings while 

maintaining trustworthiness over black box decision-support-systems. 
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