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Abstract. The goal of this paper is to build an automatic way to interpret 

conclusions from brain molecular imaging reports performed for investigation of 

cognitive disturbances (FDG, Amyloid and Tau PET) by comparing several 
traditional machine learning (ML) techniques-based text classification methods. 

Two purposes are defined: to identify positive or negative results in all three 

modalities, and to extract diagnostic impressions for Alzheimer’s Disease (AD), 
Fronto-Temporal Dementia (FTD), Lewy Bodies Dementia (LBD) based on 

metabolism of perfusion patterns. A dataset was created by manual parallel 

annotation of 1668 conclusions of reports from the Nuclear Medicine and Molecular 
Imaging Division of Geneva University Hospitals. The 6 Machine Learning (ML) 

algorithms (Support Vector Machine (Linear and Radial Basis function), Naive 

Bayes, Logistic Regression, Random Forrest, and K-Nearest Neighbors) were 
trained and evaluated with a 5-fold cross-validation scheme to assess their 

performance and generalizability. The best classifier was SVM showing the 

following accuracies: FDG (0.97), Tau (0.94), Amyloid (0.98), Oriented Diagnostic 
(0.87 for a diagnosis among AD, FTD, LBD, undetermined, other), paving the way 

for a paradigm shift in the field of data handling in nuclear medicine research. 

Keywords. Nuclear Medicine, brain molecular imaging reports, text classification 

1. Introduction 

Electronic health records (EHR) serve as the primary information cornerstone within the 

clinical domain and are central for medical research efforts. Despite notable recent efforts 

aimed to transform the medical information landscape, the proportion of structured 

reporting documents within EHR databases, particularly in medical imaging, remains 
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remarkably low. Consequently, medical researchers are compelled to manually organize 

natural language texts from EHR into spreadsheets, a critical but cumbersome process 

that acts as a significant bottleneck. The advent of Machine Learning (ML)[1] and 

Natural Language Processing (NLP)[2][3] is ushering in a transformative era in medicine, 

revolutionizing both the field itself and our interactions with unstructured 

text[4][5][6][7], thus accelerating the implementation of real-world-data analyses in the 

clinic and setting the foundation for a new paradigm of personalized medicine. 

This contribution presents a comprehensive methodology for document selection, 

conclusion extraction, data annotation, and conclusion classification, leveraging six 

established traditional machine learning techniques, following similar studies such as 

[8][9]. The methodology encompasses rigorous processes to ensure robustness and 

reliability at each stage of the analysis. First, document selection criteria and procedures 

are carefully defined to facilitate the acquisition of relevant data for subsequent analysis. 

Following document selection, a systematic approach to conclusion extraction is used to 

identify and extract key insights from the selected documents. Subsequently, a rigorous 

data annotation process is implemented to facilitate the training and validation of the 

machine learning models. Finally, six well-established traditional machine learning 

techniques are used to classify conclusions with precision and efficiency. The results of 

this methodology are then presented and discussed, providing valuable insights and 

perspectives on the efficacy and potential applications of the techniques employed. 

2. Methodology 

2.1.  Data selection 

The context of this study is a research project aimed at investigating molecular brain 

biomarkers in neurodegenerative disorders from existing amyloid-PET, tau-PET and/or 

[18F]FDG-PET images performed at the Nuclear Medicine Unit at the Geneva 

University Hospitals (HUG) since 2006. An initial list of 1434 brain PET exams has been 

compiled from patients who gave informed consent after approval by the Geneva 

Cantonal Ethics Committee (CCER). The inclusion criteria for the study are as follows: 

1) clinical suspicion of a neurodegenerative disease; 2) [18F]FDG-PET, tau -PET and/or 

amyloid-PET performed at the Nuclear Medicine Unit at the HUG since 2006; 3) subjects 

>18 years of age. The exclusion criterion is a written or documented refusal by the patient 

to allow the re-use of his/her medical records. 

This main dataset is divided into three sub-lists according to the PET examination 

modality as shown in Table 1. From this original list, only 1423 cases could be retrieved 

from the HUG datalake. After discarding further empty documents and non-PET/CT 

exams, the final list of examinations for this study contains 1386 brain PET/CT reports 

(95.6% of the original list) from 768 different patients. 

Table 1. Breakdown of PET type in original and effective list for the study 

 Amyloid FDG Tau  Total 
Original list 645 450 339 1434 

Final list 616 441 329 1386 

 

In a second step, a second extraction of documents was carried out in order to 

complement specifically low supported classes of the original dataset. In this case, the 

extraction was performed by averaging two sets of specific keywords in English and 
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French (DFT, FTD, fronto-temporale + Lewy, DLB, LBD, DCL) found in the full reports 

of such “PET/CT CEREBRAL SANS CONTRASTE (PET-1)” regardless of the PET 

modality. Out of 421 documents found, 284 documents were retained (96 for LBD and 

186 for FDT), leaving out documents from patients with unknown consent or explicit 

refusal, or who did not meet with the inclusion criteria. 

For these 1670 reports (1386+284), the conclusion part has been extracted with 

regular expressions and was used for annotation and training in the study. 

2.2. Data annotation 

A manual classification of these conclusions was performed on the first dataset using 

brat (namely brat rapid annotation tool). The annotation scheme included a main set 

of 7 labels for metabolism/perfusion as well as two pairs of labels for amyloid and tau as 

shown in Table 2. The documents of the FDG subset were annotated for perfusion 

outcome only, whereas the documents of amyloid and tau subsets were annotated for 

both perfusion outcome and for their respective test (negative vs. positive). 

Since early phase perfusion patterns of amyloid and tau radiotracers can serve as a 

proxy for pathological metabolic patterns, the documents of the FDG subset were 

annotated for neurodegenerative disorder pattern only, while the documents of amyloid 

and tau subsets were annotated for both neurodegenerative disorder pattern and for their 

respective test outcome (negative vs. positive)[10]. 

Table 2. Number of labels for the parallel annotation for the 3 tasks (perfusion, amyloid, tau), with the number 

of documents per tasks, the Cohen’s kappa and the percentage of agreement between the two annotators, the 

detailed number of labels per annotators 

 Label # docs Annot#1 Annot#2 
Neurodegeneration 

labels 

AD (Alzheimer’s disease) 

FTD (fronto-temporal dementia) 
LBD (dementia with Lewy bodies) 

other 

undetermined 
negative_perfusion 

non_applicable 

1386 

(κ=0.95) 
(%a=0.98) 

147 

42 
17 

22 

173 
259 

21 

144 

43 
13 

12 

164 
249 

21 

Amyloid labels negative_amy 
positive_amy 

unannotated 

616 
(κ=0.97) 

(%a=0.99) 

265 
326 

25 

261 
331 

24 

Tau labels negative_tau 
positive_tau 

unannotated 

329 
(κ=0.93) 

(%a=0.97) 

175 
136 

18 

186 
125 

18 

The annotators had to manually annotate the relevant group of words. This precise 

annotation is not used in the study but could be used for future work in information 

extraction. In this classification task, labels were considered for the whole conclusion. 

The annotation times for the first annotator was 8.5 hours (resp. 12.3h for the second), 

yielding an annotation rate of 2.7 document per minute (resp. 1.9 doc/mn). The Cohen’s 

kappa inter-annotator agreement is 0.95 for the perfusion annotation task (resp. 0.97/0.93 

for the amyloid /tau task) showing the great homogeneity in the parallel annotations. 

At this stage, some of the classes are clearly underrepresented (DFT, DCL, other) 

and would penalize the performance of ML approach. The annotation of the second 

dataset followed a different paradigm. Since the documents were selected by specific 

keywords, an automatic pre-annotation was performed by marking the whole conclusion 

with the corresponding annotation label (FTD for the 186 documents selected by the 

J.-P. Goldman et al. / Automatic Classification of Conclusions from Multi-Tracer Reports562



keywords DFT, FTD, fronto-temporale, and LBD for the 96 documents selected by the 

keywords Lewy, DLB, LBD, DCL). In this case, the unique annotator had to accept or to 

correct the pre-annotation. This approach gave good results from a methodological point 

of view as only 34% (resp. 60%) of the 186 (resp. 96) documents pre-annotated as DFT 

(resp. DCL) had to be corrected, with an overall lower human annotation time (3 reports 

per minute compared to 1.8 for the first stage). The annotation of the specific relevant 

group of words was not considered for this dataset. This additional dataset allowed to 

rebalance the FTD and LBD under-populated classed, prior to the learning step.  

In total the joint dataset contains 1668 documents from the two stages, with a 

breakdown by class for perfusion described in the Table 3, which shows a less 

unbalanced distribution between classes compared to Table 2. Finally, the FDG subset 

was also considered in a two-class description by merging all classes for positive 

perfusion (MA, DFT, DCL, other, undetermined) with 655 documents vs. 

negative_perfusion (with 290 documents). 

Table 3. Support for perfusion classification 

 Label # docs 
Perfusion 

labels 

AD (Alzheimer’s disease) 

FTD (fronto-temporal dementia) 
LBD (dementia with Lewy bodies) 

Other + undetermined 

159 

134 
54 

308 

 negative_perfusion 290 

2.3. Machine learning 

This stage encompassed several preprocessing steps including lower case conversion, 

retention of diacritics, removal of punctuation and stop-words (excluding negation 

indicators). The text corpus was then converted into a matrix representing word 

frequencies, including bigrams to capture collocational information.  

Six traditional ML techniques were applied: Support Vector Machine (SVM) with 

radial basis function (RBF), or with a linear function (LIN), Naive Bayes (NB), Logistic 

Regression (LR), Random Forrest (RF), and K-Nearest Neighbors (KNN). 

Hyperparameters were optimized with a 5-fold cross-validation strategy (i.e., 20% of the 

data for testing). Moreover, given the class imbalance of the dataset, the macro-F1 score 

was utilized to ensure fair evaluation across all classes regardless of their support values. 

3. Results 

Table 4. Accuracy for the 6 ML approaches and for the 4 classifying tasks , with the number of classes per 
task (k) and the proportion of the majority class (maj.k). For the perfusion classifiers, the macro F1 score is 

also indicated in parenthesis. 

 Docs k maj.k SVM-RBF SVM-LIN NB LR RF KNN 
Perfusion 1668 6 0.42 0.87(0.74) 0.86(0.71) 0.81(0.71) 0.86(0.73) 0.74(0.55) 0.79(0.66) 

Perf pres. 1668 3 0.42 0.96(0.95) 0.95(0.94) 0.93(0.91) 0.96(0.94) 0.89(0.85) 0.89(0.87) 
Amyloid 616 2 0.53 0.96 0.98 0.98 0.97 0.98 0.97 

Tau 329 2 0.51 0.94 0.92 0.85 0.92 0.84 0.85 

Table 4 shows the accuracy (and the macro-F1 score) for the 6 classification approaches 

and for the 4 classification tasks.  
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4. Discussion 

The SVM-RBF showed the best results, followed by LR. An attempt to use bigram of 

words did not give any improvement. The amyloid classification performed better 

compared with tau task, probably due to a higher number of document but also with a lot 

of recurrent wording in these conclusions. In any case, the accuracy is far above the 

percentage of the majority class. 

5. Conclusions 

This study of automatic classification of brain PET report conclusion showed great 

results, almost as high as the agreement between two human annotators. The support 

vector machine approach with radial basis function seems to be the most appropriate for 

this task. The experiment should be repeated with a larger amount and various types and 

provenance of reports to test generalizability of the method. Adding such structured 

semantic data to EHRs allows them to be incorporated into larger standardized corpora 

for research studies or into a graph database for larger purposes. 

This study is approved the Geneva CCER: Research study of molecular and 

structural neuroimaging in neurodegenerative diseases (CCER number :2022-01520). 
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