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Abstract. In Germany, the standard format for exchange of clinical care data for 
research is HL7 FHIR. Graph databases (GDBs), well suited for integrating complex 

and heterogeneous data from diverse sources, are currently gaining traction in the 

medical field. They provide a versatile framework for data analysis which is 
generally challenging for raw FHIR-formatted data. For generation of a knowledge 

graph (KG) for clinical research data, we tested different extract-transform-load 

(ETL) approaches to convert FHIR into graph format. We designed a generalised 
ETL process and implemented a prototypic pipeline for automated KG creation and 

ontological structuring. The MeDaX-KG prototype is built from synthetic patient 

data and currently serves internal testing purposes. The presented approach is easy 
to customise to expand to other data types and formats. 
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1. Introduction 

The Medical Informatics Initiative (MII) aims to improve and promote healthcare 

research in Germany [1]. Data integration centres (DIZ) were set up at university 

clinics to provide clinical data for secondary use in research according to specified 

standards. A core data set (CDS) describes data records from routine clinical practice to 

be captured at the DIZ [1,2]. Data are shared with external researchers upon successful 

usage applications, according to standard specifications for HL7 FHIR [3]. Challenges 

in handling clinical healthcare data are, e.g., the large number of heterogeneous source 

systems and the lack of standardised technical solutions for data analysis, management, 

and storage [4]. GDBs are highly suited to handle complex interconnected and 

diverse data and querying is often more efficient than for relational databases [5, 6]. 
At MeDaX, we develop innovative methods and tools for bioMedical Data eXploration 

with graph technologies. Here, we present a modular method for automated generation 

of GDBs from FHIR-formatted clinical research data. We implement a proof-of-concept 
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pipeline comprised of a generic ETL process and a harmonisation module. This pipeline 

was applied to synthetic patient data to generate a prototypic MeDaX-KG. 

2. Methods 

Synthetic data generation. Synthetic patient data for development and testing was 

generated using Synthea [7], a synthetic patient population simulator. Using its default 

settings, we generated a test population of Patients with multiple clinical entities such as 

Observations, Conditions, and Encounters describing them. Each patient bundle contains 

a Patient resource and hundreds of FHIR resources connected to it. 
  
Resource-specific ETL pipeline: from FHIR to KG. We use a data schema for 

a GDB derived from a careful manual inspection of available FHIR-formatted research 

data at the DIZ of the University Medicine Greifswald (UMG) [8]. A central, resource-

agnostic download module was created using the “fhirclient” Python module from 

Boston Children’s Hospital 3 . Resource-specific transformation modules have been 

implemented in Python for 7 of the 157 FHIR resource types, namely Condition, 

Diagnosis, Report, Encounter, Observation, Organisation, Patient, and Procedure, 

selected based on use frequency in the analysed input data set. Transformation modules, 

which include the initialization function to prepare the database and the main 

transformation function, also incorporate a utility module to handle data types, 

improving maintainability and allowing for easy tool adaptation. Transformed data is 

stored in a Neo4j graph database via a storage module, using the Neo4j Python driver. 

Source code is available at Github4. 
  
Generic ETL pipeline: from FHIR to KG. For the generic ETL process, we apply 

CyFHIR5, “a native Neo4j plugin that acts as the bridge between FHIR and Neo4j”.  It 

parses the tree-like structure of a FHIR resource JSON file, creating a corresponding 

Neo4j graph structure, regardless of the type of FHIR resource being used as input. The 

automatically generated graph is post-processed to remove redundant intermediate nodes 

and relations between FHIR resources linked through FHIR-internal References. Nodes 

and relations collectively describing the same data feature are condensed into a single 

node. Code is written in Python. 
  
Harmonisation module. BioCypher (BC), a harmonising framework for standardised 

KG creation, is applied to transform provided data into an ontology-based structure [9]. 

By default, it utilises BioLink, a high-level, open-source data model designed to 

standardise types and relationships in biological KGs [10]. Its modular approach 

facilitates integration of diverse input data and customisation of the data model. Reusing 

and adjusting the input adapter for the clinical knowledge graph [11], we defined a BC 

input adapter for a running Neo4j GDB. In addition, we implemented a feature to 

automate incorporation of new node and relationship types into the schema YAML file 

based on the given input data.  

 
3 https://github.com/smart-on-fhir/client-py 

4 https://github.com/fznkw/fhir2neo4j 

5 https://github.com/Optum/CyFHIR 
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3. Results

We developed a flexible and low maintenance method for creating an integrated KG for 

clinical research data and implemented a respective prototype. The workflow of our 

novel method consists of independent modules that, when executed in consecutive order, 

generically build a standardised structured KG for clinical research data (Figure 1, top 

half). CyFHIR transforms the synthetic patient data into a graph instance. This initial 

graph is vast, spanning up to tens of thousands of nodes, and reveals two obvious 

undesired side-effects, i) non-informative intermediate graph entities and ii) redundant 

information. We implemented a module to correct for those two side-effects. Removing 

intermediate nodes from FHIR Reference connections reduces the complexity by 

approximately 20%. Roughly another 50% are reduced by condensing multiple entities 

into a single node if they collectively describe the same feature of a resource, e.g., by 

encoding the same information using two different terminologies. To further structure 

and enrich our post-processed KG, we joined the BC project [9]. Reusing and adjusting 

the input adapter of the Clinical Knowledge Graph [11], the MeDaX-KG is structured 

according to the BioLink data model [10]. We hard-coded frequently used node types 

and relation types as a base schema.

Figure 1. Workflow schema of the ETL processes for conversion of FHIR-formatted clinical research 
data into an ontology-enriched KG. Top half (dark red): MeDaX pipeline: Input data is loaded into a 

Neo4j GDB with CyFHIR. Afterwards, the reduce graph module optimises the graph by removing 

redundancies and non-informative entities. A data specific schema is generated, combined with our base 

schema, which covers commonly used nodes and edge types, and utilised in the MeDaX adapter; lower half 
(brown): FHIR resource type-specific pipeline: The input data is downloaded and used as an input for the 

FHIR adapter. The adapter is extended with FHIR [3] type-specific transformation modules. One module has 

to be created for each FHIR resource type. Currently seven modules out of 157 are covered. Modules have to 
be updated if a FHIR resource type changes; The MeDaX adapter connects the GDB with the BioCypher 

framework [9] (green) to generate an integrated and structured KG.

To assure integration of the complete specified input data we implemented a script that 

generates an additional resource-specific schema. Both schemas are combined and users 

are informed about added entity types and how to specify them further. To evaluate the 

feasibility of KGs for clinical research data, we compared our novel approach with the 
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resource-specific ETL (Figure 1, lower half). The resource-specific ETL process results 

in a clear and subject-focused representation of the graph structure, while our generic 

approach seamlessly integrates the complete scope of possible input FHIR data without 

any additional effort. 

In summary, we designed and prototypically implemented a sustainable generic ETL 

process for the representation of FHIR-formatted clinical research data in graph format.  

Even before incorporating multiple data sources, the MeDaX pipeline prototype 

effectively validates the efficacy of our design principles, which aim to i) enhance 

standardization and reproducibility of the produced knowledge graphs, ii) reduce 

maintenance expenses, and iii) boost feature reusability via a modular approach, 

affirming the robustness and strategic foresight of our design methodology.  

4. Discussion and Outlook 

We present the first generalised concept and prototype for an automated transformation 

of FHIR-formatted clinical research data, and thus of the MII CDS, into a GDB and its 

subsequent automated semantic enrichment. The graph format allows for an intuitive 

perception of data and their connectivity. The chosen approach to combine and reuse 

existing tools, such as CyFHIR and BC, with our own customisation and automation 

features, assures standardisation and reproducibility of the generated KGs and allows to 

account for specific constraints when reusing clinical care data in research.  
Clinical data is heterogeneous in terms of types and content. Data collections of 

different MII DIZ and other clinical data holding institutions differ in size and scope. 

Due to the sensitivity of clinical data, data holders do not usually grant easy access to 

their data collections. Accordingly, to not interfere with data protection, MeDaX-KGs 

have to be set up and maintained locally by the data holders. Therefore, minimisation of 

maintenance costs and maximisation of user support are key aspects of the project and a 

fully automated transformation of FHIR resources is an essential requirement.  

Our approach maximises sustainability of the tool with respect to future changes and 

expansion of FHIR resource types. Applicability to different FHIR data collections with 

full input data coverage is assured by the automatic schema generation. Nodes and edges 

required by the input data but not yet included in the BC base schema provided in the 

MeDaX pipeline, are generically included by updating the base schema file. This 

combination of hard-coded graph entity types in the base schema with automated 

generation of new ones on demand allows to account for the most widely used FHIR 

resource types with utmost care, while preventing loss of information due to unexpected 

input data. To optimise user experience, logs inform the user about the added graph 

entities and where and how to customise them if needed. 

Initial analysis of the MeDaX-KG prototype highlights considerable opportunities 

for enhancing its graph structure and knowledge representation through optimization. In 

an ongoing effort, the lessons learnt serve to improve the different pipeline modules. The 

currently used BioLink data model [10] focuses on biological not medical terms. We will 

overcome this limitation by integrating the biomedical resource ontology (BRO) [12] 

into our data schema. A graphical user interface will provide simple features for data 

visualisation and exploration. The two post-processing steps of the MeDaX-KG reduce 

graph complexity by more than 50%. We anticipate that further investigation will reveal 

additional potential for structure optimisation and we will iteratively improve our ETL 

process, working towards an optimal subject-focused representation. To this end, we will 
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compare the resulting graph structures to the gold standard schema from the resource 

type-specific ETL process. Since a major limitation of our prototype is the usage of 

synthetic data, in a next step, the pipeline will undergo rigorous testing within the UMG 

DIZ productive environment to ensure its robustness and reliability in real-world settings. 

In this context, we will closely cooperate with the actual users of our tool to set up an 

appropriate user access control, supporting the responsible handling of sensitive data and 

ensuring patient safety and trust. 

The interest in reusing clinical care data for research is. Critical insights into clinical 

data management often emerge through the implementation of foundational 

infrastructures. FHIR, an established standard format for the exchange of electronic 

health data, is not optimal for data visualisation and exploration. The proposed GDB 

model suits complex, interconnected, heterogeneous data while remaining accessible and 

intuitively understandable to various stakeholders and domain experts in biomedicine. 

Standardisation and semantic enrichment will improve FAIRness of provided research 

data and lead to better reusability and reproducibility of scientific results [13]. Based on 

user-friendliness, scalability and broad applicability of the MeDaX pipeline, this tool has 

the potential to substantially advance clinical research data representation and analysis. 

 

Acknowledgements: This work has been funded by the BMBF, FKZ 01ZZ2019. 

References 

[1]  Semler SC, et al. German Medical Informatics Initiative – A National Approach to Integrating Health 
Data from Patient Care and Medical Research. Methods Inf Med. 2018;57(S 01):e50-6. 

[2]  Ganslandt T, Boeker M, Lobe M, Prasser F, Schepers J, Semler S, et al. Der Kerndatensatz der 

Medizininformatik-Initiative: Ein Schritt zur Sekundarnutzung von Versorgungsdaten auf nationaler 
Ebene. In: Forum der Medizin-Dokumentation und Medizin-Informatik 2018;20:17. 

[3]    Bender D, Sartipi K. HL7 FHIR: An Agile and RESTful approach to healthcare information exchange. 

In: Proceedings of the 26th IEEE international symposium on computer-based medical systems. IEEE 
2013;326-31. 

[4]    Park Y, Shankar M, Park BH and Ghosh J. Graph databases for large-scale healthcare systems: A 

framework for efficient data management and data services. IEEE 30th International Conference on Data 
Engineering Workshops, Chicago, IL, USA 2014;12-19, doi: 10.1109/ICDEW.2014.6818295. 

[5]    Timón-Reina S, Rincón M, Martínez-Tomás R. An overview of graph databases and their applications 

in the biomedical domain. Database (Oxford) 2021;2021:baab026. 
[6]    Walke D, et al. The importance of graph databases and graph learning for clinical applications. Database 

(Oxford) 2024;2024:baad045, doi: 10.1093/database/baad045. 

[7]    Walonoski J, et al. Synthea: An approach, method, and software mechanism for generating synthetic 
patients and the synthetic electronic health care record. J Am Med Inform Assoc. 2018;25(3):230-238, 

doi: 10.1093/jamia/ocx079. Erratum in: J Am Med Inform Assoc. 2018;25(7):921. 

[8]    Menzel F, Waltemath D, Henkel R. Exploring New Possibilities for Research Data Exploration Using 
the Example of the German Core Data Set.  Stud Health Technol Inform. 2023 May 18;302:749-750. doi:  

10.3233/SHTI230255. PMID: 37203485. 

[9]    Lobentanzer S, Aloy P, Baumbach J, Bohar B, Danhauser K, Dogan T, et al. Democratizing Knowledge 
Representation with BioCypher. Nat Biotech 2023;41:1056-1059. 

[10] Unni, D., et al. Biolink Model: A universal schema for knowledge graphs in clinical, biomedical, and 

translational science. Clinical And Translational Science 2022; 1848–1855, doi: 10.1111/cts.13302. 
[11] Santos, A., Colaço, A.R., Nielsen, A.B. et al. A knowledge graph to interpret clinical proteomics data. 

Nat Biotechnol 2022;40:692–70, doi: 10.1038/s41587-021-01145-6. 

[12] Tenenbaum, J. D., Whetzel, P. L., Anderson, K., Borromeo, C., Dinov, I. D., Gabriel, D., et al. The 
Biomedical Resource Ontology (BRO) to enable resource discovery in clinical and translational research. 

Journal Of Biomedical Informatics, 2011; 44(1):137–145, doi: 10.1016/j.jbi.2010.10.003. 

[13] Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding 
Principles for scientific data management and stewardship. Scientific data. 2016;3. 

I. Mazein et al. / MeDaX: A Knowledge Graph on FHIR 371


