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Abstract. Pericardial effusion can be a sign of significant underlying diease and, in some cases, 

may lead to death. Post-mortem computed tomography (PMCT) is a well-established 
tool to assist death investigation processes in the forensic setting. In practice, the 

scarcity of well-trained radiologists is a challenge in processing raw whole-body PMCT 

images for pericardial effusion detection. In this work, we propose a Pericardial 
Effusion Automatic Detection (PEAD) framework to automatically process raw 

whole-body PMCT images to filter out the irrelevant images with heart organ absent 

and focus on pericardial effusion detection. In PEAD, the standard convolutional 
neural network architectures of VGG and ResNet are carefully modified to fit the 

specific characteristics of PMCT images. The experimental results prove the 

effectiveness of the proposed framework and modified models. The modified VGG 
and ResNet models achieved superior detection accuracy than the standard 

architecture with reduced processing speed. 

Keywords. Pericardial effusion detection, post-mortem computed tomography, 

convolutional neural network 

1. Introduction 

Pericardial and/or heart disease may be accompanied by pericardial effusion (PE), which 

refers to the increased amount of fluid inside the pericardial cavity [1]. Detection of PE 

is essential for diagnosis and treatment in the clinical domain. Clinicians generally 

diagnose PE by analyzing computed tomography (CT) images or echocardiographic 
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images [1,2], which requires years of training and working experience to derive into an 

accurate diagnostic decision. In forensic medicine, whole-body PMCT examinations can 

support forensic pathologists with detailed information for analysis and avoid dissection 

due to cultural or family reasons [3]. Manual detection of PE with the aid of PMCT began 

in 2004 [4]. However, this requires an extensive number of highly trained practitioners 

and large capital investments, thus, becoming a major challenge for most forensic 

medical facilities.  

Deep learning technologies have significantly impacted many fields in the past two 

decades, especially the medical domain [5]. The Convolutional Neural Networks (CNN) 

has shown promising achievements in working with medical images to assist clinicians 

in making diagnostic decisions more efficiently. Inception-v3 and VGG models have 

been used in identifying PE cases based on echocardiograms [6,7] and positron emission 

tomography images [8]. Few works [3-9] have been reported in PE detection from 

forensic images. A limited number of available cases with pixel-level labels and a lack 

of appropriate sampling selections make the detection task even difficulty. Besides, the 

classic CNN models, such as VGG and Res Net, require high computational costs in 

processing a large amount of data, being less efficient. Therefore, we urgently need more 

effective models to address such challenges.  

Accordingly, we propose the “Pericardial Effusion Automatic Detection” (PEAD) 

framework, which allows forensic personnel to quickly and accurately detect the 

presence of pericardial effusion. To assist forensic pathologists in workload management, 

the proposed framework inputs the stack of whole-body PMCT and automatically 

discards the irrelevant sample slices where cardiac tissues are absent. The remaining 

cardiac PMCT slices are further analysed for the PE detection. Considering classic CNN 

models are designed for natural images, we modified two CNN models with simplified 

structures but kept promising performance. 

In summary, this work contributes as follows: (1) introducing a framework that 

assists pathologists in detecting PE using whole-body PMCT images, and (2) providing 

two simplified CNNs based on VGG and ResNet architectures to achieve accurate 

diagnosis with low computational cost.  

2. Methods 

2.1. The PEAD framework 

Figure 1 demonstrates the proposed PEAD framework. The raw PMCT scans are in 3D 

DICOM format, which are transformed into grey-scale 2D sample slices extracted every 

10 mm and resized to 224�224 pixels. The 10-fold cross-validation method was applied 

to evaluate the performance of the proposed models.  

Stage 1 aims to recognize the heart organ from images to filter out irrelevant samples. 

Only those with heart presented are kept and taken as the input for Stage 2. Nearly 85% 

of the processing time can be saved by adopting this filtering operation compared to 

direct detection on all raw whole-body scans without any manual intervention. Stage 2 

checks each remaining sample for PE detection. A series of ablation experiments were 

conducted to compare the performance of various CNN architectures. The results show 

that VGG and ResNet models obtained higher classification accuracies (around 85%).  
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Figure 1. The Pericardial Effusion Automatic Detection (PEAD) framework.

2.2. Modified CNN models for PMCT image processing

The standard VGG [9] and ResNet [10] models were designed to classify natural images. 

With an increased number of layers, the accuracy and be enhanced accordingly, such as 

ResNet101 [10]. However, such an approach could potentially increase the 

computational cost. Therefore, a task-specific CNN is generally required to outperform 

standard models when dealing with small-scale image sets [11]. Besides, PMCT images 

are naturally simpler in context than natural ones due to the fixed acquisition angle and 

positions of organs. Accordingly, we reduced the number of layers in the standard VGG 

and ResNet architectures to keep the minimum complexity of the models. Figure 2 shows 

the new structures of the modified ResNet10 and VGG8 models. 

Figure 2. The modified ResNet10 and VGG8 models.

Only five convolution modules (Cov 1 to Cov 5) were kept in both models. In 

ResNet10, a basic residual block with an identity shortcut was applied to the second 

convolution module (Cov 2). The remaining three convolution modules adopted special 

residual basic blocks with a stride of 2 for subsequent feature extraction and down-

sampling. Average pooling was used to speed up processing without loss of accuracy 

[10]. VGG8 has five convolutional layers and three fully connected (FC) layers to 

produce the probability of the presence of PE as the final output. 

The complexity of the models was measured by floating point operations per second 

(FLOPs) [12], calculated as:

FLOPs = (Kh × Kw × Cin × Cout + Cout) × H × W (1)

where Kh is the kernel height and Kw is the kernel width. Cin and Cout are the channel 

number of input and output, H and W refer to the output feature map’s height and width. 
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ResNet10 is expected to be the shortest training and test time with 8.10 × 108 FLOPs 

followed by VGG8 with 3.39 × 109. 

3. Results 

Ninety anonymous deceased individuals from the publicly available New Mexico 

Decedent Image Database (NMDID) were applied in this work [13], including 45 males 

(�0.4) and 45 females (�2.5). 44 of them presented with PE, and 46 had a normal heart. 

After pre-processing, 2,775 PMCT slices were extracted. 1,502 slices have heart organs, 

670 were labelled as PE, and 832 were normal.  

A set of experiments were conducted to assess the proposed PEAD framework 

and the modified models. Eight standard CNN models [9,10]: VGG11, VGG13, VGG16, 

VGG19, ResNet18, ResNet34, ResNet50 and ResNet101, were involved for comparison. 

The details are as follows in Table 1. 

Table 1: Performance comparison between proposed PEAD-based and baseline models in PE detection. 

Classifier  Acc. Prec. Rec. FPR F1 AUC IPS #Para. FLOPs  
PEAD-R10-

V8 
0.8941 0.9392 0.9236 0.2087 0.9313 0.9320 185.66 128.37 5.23 

PEAD-V8-V8 0.8933 0.9386 0.9229 0.2087 0.9306 0.9313 140.22 246.92 6.90 
PEAD-R10-

R10 

0.8872 0.9439 0.9106 0.1990 0.9270 0.9206 271.72 9.83 3.50 

PEAD-R10-
R19 

0.8842 0.9316 0.9173 0.2389 0.9244 0.9234 86.26 144.49 21.43 

R10 0.8720 0.9555 0.8852 0.1907 0.9190 0.8990 549.69 4.91 1.78 
R101 0.8567 0.9625 0.8676 0.1782 0.9126 0.8899 111.89 42.5 15.66 
V8 0.8591 0.9363 0.8840 0.2636 0.9094 0.8817 280.35 123.46 3.45 

V19 0.8473 0.9689 0.8567 0.1349 0.9094 0.8711 102.32 139.58 19.65 

 

Table 1 summarizes the performance of five PEAD-based models and baseline 

classifiers for the PE detection task. With simpler structure, the modified model, 

ResNet10, overperformed all standard models except VGG19 on precision (Prec.) and 

false positive rate (FPR). The PEAD-based models with two CNNs provide better 

performance than the baseline models. Particularly, the proposed PEAD-based model 

with ResNet10 in Stage 1 and VGG8 in Stage 2 (PEAD-R10-V8) achieved the highest 

F1 scores 93%. A high recall (Rec. /true positive rate, TPR) score indicates all PEAD-

based models are sensitive to PE. With the least number of parameters (#Para.) involved, 

R10 and PEAD-R10-R10 were the fastest models. PEAD-R10-R10 took approximate 

94.5 minutes to complete the training and testing on the entire dataset of 2,775 PMCT 

slices.  

4. Discussion 

The proposed PEAD framework aims to optimize the PE detection process. Experiments 

show that the framework can improve the sensitivity of the detection process by 

classifying cardiac PMCT images first and detecting PE based on them. Since the PEAD 

framework emulates the human detection pipeline, the results produced by the PEAD 

framework are more interpretable than those produced by the method that directly 

classifies PE on the whole-body PMCT dataset. 
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Since this work is the first of its kind which adopts PMCT to detect PE, there is no 

existing literature to be compared. For fair evaluation, we evaluated 18 models and two 

modified ones on the same task. The experimental results support our view that the 

models with fewer convolutional layers can achieve a close result to the standard models 

in the task of heart and PE classification. Moreover, the simplified models can save storage 

space while maintaining accuracy. This also makes it possible to deploy CNN-based PE 

detection algorithms on devices with limited storage space. 

5. Conclusions 

A CNN-based PEAD framework with modified VGG and ResNet (VGG8 and ResNet10) 

is proposed in this work to improve efficiency for PE detection from whole-body PMCT 

images automatically. Since real-life PMCT images and labels are not easy to obtain, the 

data resource is always a limitation of the related work in PE detection. This paper is our 

initial work, and we aim to obtain more cases for use in future work.  
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