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Abstract. This study aimed to develop and externally validate a prognostic
prediction model for screening fetal growth restriction (FGR)/small for gestational
age (SGA) using medical history. From a nationwide health insurance database
(n=1,697,452), we retrospectively selected visits of 12-to-55-year-old females to
healthcare providers. This study used machine learning (including deep learning)
and 54 medical-history predictors. The best model was a deep-insight visible
neural network (DI-VNN). It had area under the curve of receiver operating
characteristics (AUROC) 0.742 (95% CI 0.734 to 0.750) and a sensitivity of
49.09% (95% CI 47.60% to 50.58% at with 95% specificity). Our model used
medical history for screening FGR/SGA with moderate accuracy by DI-VNN. In
future work, we will compare this model with those from systematically-reviewed,
previous studies and evaluate if this model's usage impacts patient outcomes.

Keywords. Fetal growth restriction, small for gestational age, machine learning,
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1. Introduction

Fetal growth restriction (FGR) and small for gestational age (SGA) are a condition with
different diagnostic measures [1]. Preventing FGR/SGA may reduce neonatal
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morbidity and its costs [2], but an effective prevention needs accurate screening [3].
Current methods using ultrasound or biomarkers were inaccessible in most settings [4,
5]. Meanwhile, a health insurance claim database abundantly records medical history of
which association [6] with FGR/SGA allows its proactive screening, particularly in
countries with universal health coverage [7]. However, studies have yet to develop a
screening method for FGR/SGA wusing medical history. Both statistical and
computational machine learning (ML) could predict pregnancy outcomes using medical
history [8,9]. We aimed to develop and externally validate a prognostic prediction
model for screening FGR/SGA using medical history in nationwide insured women.

2. Methods

We followed a pre-registered protocol [10]. Data are available from the badan
penyelenggara jaminan sosial (BPJS) kesehatan in Indonesia (https://e-ppid.bpjs-
kesehatan.go.id/). This study was under a project of deep-insight visible neural network
(DI-VNN) for predicting diseases. Its ethical review was exempted (the Taipei Medical
University Joint Institutional Review Board, TMU-JIRB no.: N202106025).

We retrospectively selected 12-to-55-year-old females that visited all levels of care
of a nationwide health insurance in Indonesia (August 2019 [11]: access no.:
5064/1.2/0421). Post-delivery visits were excluded. An event outcome was defined by
the International Classification of Disease version 10 (ICD-10) codes prefixed by 0365
(mothers) and P05 (newborns). The candidate predictors were medical histories of
diagnoses and procedures. We identified 54 of them, including latent candidate
predictors (multiple pregnancies, varicella, urinary tract infection, and placenta previa).

Model 1 was a statistical ML of ridge regression (RR) using latent candidate
predictors pre-selected by multivariate analyses. Models 2 to 4 were computational ML
using 10-fold, cross-validated principal components (PCs) with top proportions of
variance explained to pursue >20 events per candidate predictor for: (1) elastic net
regression (PC-ENR); (2) random forest (PC-RF); and (3) gradient boosting machine
(PC-GBM). The fifth model was DI-VNN. Unlike the protocol [10], we did not limit
candidate predictors by a false discovery rate; otherwise, network architecture could
not be constructed. All model was recalibrated by logistic regression or a general
additive model using locally weighted scatterplot smoothing (GAM-LOESS).

This study applied internal (~64%) and external (~36%) validations (random
sampling ~16%; geographical and temporal splitting ~20%). For calibration split, we
used ~20% of the internal validation. Before recalibration, we applied: (1) five-fold
cross-validation for hyperparameter tuning and (2) bootstrapping for final training.
Unlike the protocol [10], we chose 100 repetitions for bootstrapping, due to sample size.

We evaluated the models in optimal range of predicted probabilities among all. A
model was well-calibrated if it approximated: (1) similar regression-reference line; (2)
distinguished distributions of events and nonevents; (3) intercept of ~0 and slope of ~1;
and (4) the Brier score of <0.05. We defined the best clinical utility among well-
calibrated models by decision curve analysis based on its net benefit at 95% specificity.
Eventually, we evaluated the best discrimination among well-calibrated models by
ROC curve, sensitivity at 95% specificity, and the AUROC (>0.5). AUROCs by
external validation was shown for comparison. We computed 95% confidence interval
(CD) inferred by bootstrapping and cross-validation. The analytical codes are available
at https://github.com/herdiantrisufriyana/fgr_sga.
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3. Results

From the database (»=1,697,452), we selected 12-to-55-year-old females (#=169,746)
that had visited (#=507,319) primary, secondary, and tertiary care. The visits had no
overlap between internal and external validation sets. To characterize subjects in the
internal validation set (Table 1), we included uncensored outcomes (n=26,576).

Table 1. Subject characteristics for association tests and internal validation set.

Variable Not FGR/SGA* FGR/SGA*® P value
(n=26,459) (n=117)
Pregnancy First pregnancy, © no. (%) 25,096 (94.85) 109 (93.16)  (reference)
episode ° Second pregnancy, € no. (%) 1,363 (5.15) 8 (6.84) P=41
Maternal age ~ Mean (SD), year 29 (6) 28 (6) P=.006**
Insurance class First, no. (%) 3,604 (13.62) 21 (17.95) (reference)
Unspecified, no. (%) 87 (0.33) 1(0.85) P=51
Second, no. (%) 9,226 (34.87) 50 (42.74)  P=78
Third, no. (%) 13,542 (51.18) 45(38.46)  P=.03*
Marital status ~ Married, no. (%) 16,831 (63.61) 77 (66) (reference)
Single, no. (%) 2,397 (9.06) 20 (17) P=.02*
Unspecified, no. (%) 7,117 (26.90) 20 (17) P=.05
Divorce/widow, no. (%) 114 (0.43) 77 (66) P=97
Occupation Central-government employee, no. (%) 7,683 (29.04) 20 (17.1) (reference)
segment of the  Private employee, no. (%) 9,611 (36.32) 57 (48.7) P=.002%*
householder Private employer or self-employed, no. (%) 7,871 (29.75) 35(29.9) P=.06
Local-government employee, no. (%) 1,278 (4.83) 5(4.3) P=42
Unemployed, no. (%) 16 ( 0.06) 5(4.3) P=98

2, Subject per pregnancy (no censored delivery); °, Excluding non-pregnancy; ¢, The 1* and 2™ pregnancies
within database period; FGR, fetal growth restriction; SGA, small for gestational age; SD, standard deviation.

The well-calibrated models were (Figure 1a): PC-ENR, PC-GBM, and DI-VNN.
The PC-GBM was the most well-calibrated (intercept -0.00098, 95% CI -0.13098 to
0.12902; slope 0.95, 95% CI 0.46 to 1.44; Brier score 0.0063). The net benefits of the
three models were higher than those of treat-all and treat-none prediction (Figure 1b).
The DI-VNN was the best clinical utility (net benefit 0.0023, 95% CI 0.0022 to 0.0024).

The discrimination ability differed among the well-calibrated models by ROCs and
AUROC:s (Figure 1c). Based on the internal calibration split, the best model was also
DI-VNN (AUROC 0.742, 95% CI 0.734 to 0.750; sensitivity 49.09%, 95% CI 47.60%
to 50.58%). Using external validation, the AUROC of the DI-VNN (0.561, 95% CI
0.558 to 0.564) was considerably robust (i.c., the 95% CI >0.5).

4. Discussion

For predicting FGR/SGA, the previous models required ultrasound or biomarkers and a
specific gestational age: (1) 25~42 weeks [12]; (2) 10~14 weeks [13]; and (3) 30~35
weeks [14]. Meanwhile, an effective prevention of FGR should be given <16 weeks’
gestation [3]. The DI-VNN were competitive to those models. External validation
estimated the DI-VNN to outperform the previous model [13]. Evaluation of the
previous models [12,13,14] also used training set only, which might be overoptimistic.
Our models did not require ultrasound or biomarkers to predict FGR/SGA in
advance, including the DI-VNN. We could apply our models to any pregnant women
without a specific gestational age. Unlike the previous studies, we externally validate
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the future performance of the DI-VNN. However, the accuracy of DI-VNN was only
moderate although similar accuracies were achieved by the previous models. The
impact of DI-VNN on patient outcomes is also still unclear. Yet, many previous studies
in medicine have yet to evaluate the impacts of their prediction models [15].
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Figure 1. Model calibration (a), clinical utility (b), and discrimination (c). Solid lines show regressions over
the estimates of true probabilities. The dotted lines show a threshold of 95% specificity (a, b, ¢) or AUROCs
of 0.5 and the average per facet (c, AUROC comparison plot). AUROC area under the curve of receiver
operating characteristics; CI, confidence interval; DI-VNN, deep-insight visible neural network; ENR, elastic
net regression; GBM, gradient boosting machine; PC, principal components.

5. Conclusions

FGR/SGA could be screened using medical history with moderate accuracy by DI-
VNN. In future work, this model should be compared with those from systematically-
reviewed, previous studies and evaluated for its impacts on patient outcomes.
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