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Abstract: We have developed a time-oriented machine-learning tool to predict the 

binary decision of administering a medication and the quantitative decision 
regarding the specific dose. We evaluated our tool on the MIMIC-IV ICU database, 

for three common medical scenarios. We use an LSTM based neural network, and 

considerably extend its use by introducing several new concepts. We partition the 
common 12-hour prediction horizon into three sub-windows. Partitioning models 

the treatment dynamics better, and allows the use of previous sub-windows’ data as 

additional training data with improved performance. We also introduce a sequential 
prediction process, composed of a binary treatment-decision model, followed, when 

relevant, by a quantitative dose-decision model, with improved accuracy. Finally, 

we examined two methods for including non-temporal features, such as age, within 
the temporal network. Our results provide additional treatment-prediction tools, and 

thus another step towards a reliable and trustworthy decision-support system that 

reduces the clinicians’ cognitive load. 
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1. Introduction 

Physicians deal with complex medical situations requiring fast decisions with significant 

repercussions. The current solution is a set of rigid and simple evidence-based rules, 

called clinical guidelines. However, this assumes the physician has made the right 

diagnosis, does not specify the appropriate dose, and ignores the disease progression 

pattern and the patients’ response to the initial treatment. These limitations increase the 

variance in care, and thus leading to what Kahneman et al. consider as increased 

decision-making noise [1]. A computational solution in the form of a complete, context-

sensitive decision support system can help inexperienced medical residents in guidance, 

error detection and education, nudging young clinician towards the right path [2]. 
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In this study, we present a solution by extending a known deep learning 

methodology (LSTM) by several new considerations for predicting what treatment will 

be provided by an average physician, while accounting to the patient’s unique 

characteristics and disease course.  To evaluate our approach, we chose three common 

medical scenarios in the Intensive Care Unit (ICU) setting, for which several causes and 

temporal trajectories might be possible, potentially modifying the course of therapy.  

2. Methods 

2.1. Setting 
 

This project was conducted using the Medical Information Mart for Intensive Care 

(MIMIC) IV database that contains de-identified data regarding 53,000 patients 

hospitalized in the ICU of Beth Israel Deaconess Medical Center between 2008 and 2019. 

It includes demographics, past medical history, laboratory results, and vital signs 

reported on an hourly basis, at the highest temporal granularity resolution in the database.  

2.2. Time windows for treatment prediction 
 

Medical treatment is a continuous process that takes time to fully manifest itself. As a 

logical window treatment, we chose a 12-hour horizon that covers both the immediate 

response and additional follow-up treatment.  We then split it into three partitions of four 

hours, each providing sufficient time for administration of treatment and for measuring its 

effect. For training, the previous 24 hours’ data were used as input, and the treatment 

given in the next four hours was the target (Figure 1). Each patient could have several 

clinical events, but they had to be a least 12 hours apart. Using a 4 hours sliding window, 

we “crawled” along the timeline, training our models. 

 

Figure 1. The input and prediction time periods for the three partitions of the treatment horizon. 

2.3. Predictive and target variables 
 

The input data variables used for prediction were chosen by a medical domain expert and 

included both temporal data - laboratory tests and vital signs, as well as constants - 

demographics and past medical history. Linear imputation was used to fill the missing 

values for achieving hourly granularity for the temporal data. Our goal was to predict the 

action performed by the actual Beth Israel Medical Center's attending physician (whoever 

that was), as recorded in the database - both the binary decision of prescribing any 

treatment, evaluated using AUC (area under curve) and the dose decision, evaluated using 

the mean square error (MSE) and mean absolute error (MAE). A multi-outcome 
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architecture was used when several treatments were predicted. We evaluated the algorithm 

in three medical scenarios: 1. Hypoglycemia, low blood sugar, with the goal to predict 

intravenous (IV) glucose treatment; 2. Hypokalemia, low blood potassium, with the goal 

to predict oral (PO) and IV potassium treatment; 3. Hypotension, low blood pressure, with 

the goal to predict IV treatment with Fluids, Dopamine and Norepinephrine.    

2.4. The predictive architecture and extensions 

The architecture we designed for this study employs a recurrent neural network, 

specifically a bidirectional Long-Short Term Memory (LSTM) layer, followed by two 

fully connected layers. We extended this architecture by introducing several new 

concepts. First, we compared two methods for handling, by the augmented LSTM 

network, the integration of constant, a-temporal (e.g., demographic) data with temporal, 

dynamic data (e.g., results of a laboratory test): [1] An “External model” that analyzed 

the constants in a separate branch of the neural network and propagated changes in 

weights, as a result of the feedback, throughout both branches, with [2] an “Internal 

model” that incorporated the constants into the input of the LSTM by repeatedly adding 

them to the temporal features in each time-step. Second, we evaluated the use of earlier 

sub-windows' data (e.g. during hours [0-4] following the detection of the clinical state) 

as additional training data for the later sub-windows (e.g., for hours [4-8]) prediction, in 

addition to the use of training data from the later period. Naturally, the evaluation used 

test data belonging only to the later sub-window. Third, we proposed and evaluated a 

sequential prediction process composed of two classifiers: A classifier trained to make 

the binary decision whether to treat at all; followed, when relevant, by the application of 

a classifier trained separately for the quantitative decision of determining the magnitude 

of therapy. Both models were trained independently on all of the available data, rather 

than only on data of subjects receiving treatment, due to superior results we noted when 

learning from the full data set. 

3. Results 

3.1. Predicting treatment decisions across the partitioned 12-hours horizon 

The three sub-windows differed in their treatment rate and dose, especially after a 

hypokalemia state, in which the treatment prevalence dropped, starting with the first time 

window following the detection of hypokalemia, from 52.6% to 15.4%. For other domains 

the reduction was milder, while the treatment dose dropped by 20% to 30%. Usually, the 

prediction accuracy for the first sub-window was higher than for the following two sub-

windows. Using data from previous sub-windows resulted in up to 2% to 3% boost in 

AUC and 10% reduction in MAE and MSE. This effect was more significant for 

hypoglycemia (Table 1) and hypotension, in which the change across time windows was 

mild, compared to the variation in the domain of hypokalemia.   
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Table 1.  Treatment prediction using previous sub-window data - hypoglycemia domain.

sub-window data only[+4,+8] and [+4,+8] sub window data[0,+4]
Binary treatment prediction model

Accuracy 0.66 0.681

AUC 0.727 0.746

Dose prediction model
MAE 11.739 10.726

MSE 21.584 17.226

AUC = Area under the ROC curve, MAE – Mean absolute error, MSE = Mean square error

3.2. Optimal use of constant features

Using constants as part of the LSTM input (“Internal model”), led to a 1.5% 

improvement in AUC compared to the use of a branched network (“External model”), 

and to a 3.5% improvement compared to not using the constant data at all.  Due to the 

superiority of the Internal model, it was used during the described experiments.  

3.3. Sequential dose prediction 

Using the sequential process resulted in a four to seven times increase in the sensitivity 

to “no treatment” decision in the hypokalemia domain (Table 2) and a lesser increase in 

other domains. In addition, using the sequential model resulted in a reduction of 9% to 

39% in the medication-dose MAE in all scenarios, with a similar MSE. We believe this 

divergence occurs as MSE is disproportionally affected by large errors, due to squaring.

Table 2. Hypokalemia treatment prediction for IV treatment using the sequential model.

Base model Sequential prediction
MAE 16.888 15.273

MSE 21.702 21.926

4. Discussion

Medical treatment is a complex endeavor requiring the analysis of large quantities of 

data and devising a treatment plan according to guidelines and the elusive “gut feeling” 

gained by experience. In this study we constructed a temporal neural network framework 

that can model the complex time dependent nature of the treatment process and output 

the suitable common practice of typical Beth Israel Deaconess ICU clinician. 

MAE – Mean absolute error, MSE = Mean square error
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 Treatment prediction is a hard task to crack even for IBM’s Watson system, reported 

to have provided incorrect cancer treatment recommendations. Other notable treatment 

prediction include prediction of sepsis treatment in the ICU setting using reinforcement 

learning [3] and CURATE.AI, that predicts chemotherapy in prostate cancer. However, 

except for specific scenarios, it is hard to ascertain the effect of a single response on the 

patient’s prognosis. Nevertheless, a decision support tool for clinicians is highly needed. 

 Thus, to provide a solution for the general scenario we postulate that mimicking the 

average physician’s response will provide a highly useful tool for decision support, 

education and error detection. We used the common LSTM based architecture to analyze 

the prior 24 hours and issue a binary prediction of treatment and continuous dose 

prediction in a multi-outcome form. We proceeded to examine several applicational 

considerations to extend the basic architecture.  First, we found that integrating constant 

features as part of the input into the LSTM performs better, perhaps because the temporal 

dynamic data is examined in the context of the constant data items. Then, we partitioned 

the 12-hour treatment window into three equal sub-windows and showed that the first 

four hours are the most active and treatment slows, sometimes extremely so, afterwards.  

Despite this, the use of data from previous sub-windows to train models for future periods 

resulted in improved results, thus alleviating a major problem in the healthcare domain 

of insufficient training data. Finally, we showed that a sequential model significantly 

improves the “No Treatment” prediction, as well as the mean accuracy of absolute dose 

prediction, both important aspects for making a decision support system trustworthy.  

 This study has several limitations. First, further research is needed to evaluate the 

effect of deviation from the proposed prediction on the outcome of the patients.   Second, 

our algorithms were evaluated on one large database; assessing them on an additional 

database can provide better insight about the generalizability of the results.  

5. Conclusions 

This study examined treatment prediction in three scenarios and showed the successful 

extension of a recurrent neural network with constant features for mimicking the action 

of ICU physicians. We believe that using this architecture can be a stepping stone to a 

decision support system for a young clinician, or provide an alarm for mistreatment.  
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