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Abstract. The benefits and harms of lung cancer screening (LCS) for patients in the 
real-world clinical setting have been argued. Recently, discriminative prediction 

modeling of lung cancer with stratified risk factors has been developed to investigate 

the real-world effectiveness of LCS from observational data. However, most of 
these studies were conducted at the population level that only measured the 

difference in the average outcome between groups. In this study, we built 

counterfactual prediction models for lung cancer risk and mortality and examined 
for individual patients whether LCS as a hypothetical intervention reduces lung 

cancer risk and subsequent mortality. We investigated traditional and deep learning 

(DL)-based causal methods that provide individualized treatment effect (ITE) at the 
patient level and evaluated them with a cohort from the OneFlorida+ Clinical 

Research Consortium. We further discussed and demonstrated that the ITE 

estimation model can be used to personalize clinical decision support for a broader 
population. 
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1. Introduction 

Lung cancer is the leading cause of cancer-related death in the United States, with an 

estimated 236,740 new cases in 2022, out of which 130,180 patients will die [1]. The 

five-year survival rate is 56% for localized cases, but early diagnose occurs only in 16% 

cases [2]. Early identification of lung cancer is critical due to its high public health 

burden. Clinical guidelines recommended low-dose CT (LDCT)-based lung cancer 

screening (LCS) for high risk individuals [3]. For example, the USPSTF's 2014 guideline 

recommends LDCT for those 55-80 years old, with 30-pack-year smoking history [3], 

and the 2021 update broadens it to those 50-80 years old with 20 pack-year smoking 

history [4]. However, LDCT use remains low among high-risk heavy smokers who 
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would benefit the most from LCS, and there’s overuse among low-risk individuals, 

where the high false-positive rate associated with LDCT (i.e., 23.3% from the original 

NLST trial) would pose harm that can lead to postprocedural complications [5]. 

Prediction models like PLCO2012 help guide LCS decisions. For instance, it is a logistic 

regression risk model that incorporates LDCT results and other clinical variables using 

NLST data. It notably improves discrimination power compared over models without 

screening results [6]. However, previous studies often focus on population level effects 

measuring average differences between groups (i.e., the average treatment effect [ATE]) 

of those with or without LDCT. In reality, the effect of the intervention would be 

different for each individual. Therefore, estimating the personalized individualized 

treatment effect (ITE) is crucial for tailored clinical decisions. 

This study aims to build a counterfactual prediction model for lung cancer risk and 

mortality and to examine whether LCS as a hypothetical intervention reduces lung cancer 

risk and subsequent mortality. Specifically, a counterfactual model can elucidate the 

causal effect of an intervention (i.e., lung cancer screening in our context) on the outcome 

of interest (i.e., lung cancer risk and mortality) and answer the “what if” question: what 

if the patient goes through (or not) lung cancer screening, how would it impact the odds 

of the individual’s mortality due to lung cancer? 

2. Methods 

2.1. Data source and study population 

We obtained individual-level patient data from the OneFlorida+ Clinical Research 

Consortium [7], which contains robust longitudinal and linked patient-level electronic 

health record (EHR) data of ~16.8 million Floridians.  

We consider adult patients (>18 years) who had done LDCT as the cohort of the 

interest and a control group of patients that are matched on age, sex and index date. 

Figure 1 shows the detailed study population selection flow along with a patient timeline 

of the covariates extraction period and the outcome observation window. 

 

 
 
 

 
 

 

 
 

 

 
 

 

 
 

Figure 1. Study population selection flow chart and patient timeline of observation window. 

2.2. Outcomes and covariates 

We consider the first lung cancer diagnosis after the index date as the primary outcome, 
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and all-cause mortality the second. Covariates were obtained from a literature search on 

lung cancer risk factors [8]. These include age, sex, race/ethnicity, rural/urban status, 

smoking status, body mass index (BMI), Charlson comorbidity index (CCI), histories of 

hypertension, diabetes, heart disease, and stroke, and a series of pulmonary conditions, 

including cough, hemoptysis, chest pain, dyspnea, pleural effusion, lower respiratory 

tract infections, upper respiratory tract infections, chest infection, voice hoarseness, 

asthma, pneumonia, bronchitis, hay fever, emphysema, sputum cytological atypia, 

chronic obstructive pulmonary disease. Clinical conditions were defined based on ICD 

codes.  

2.3. Causal modeling 

We used 4 causal modeling approaches based on the potential outcomes framework for 

estimating ATE/ITE that address the selection bias differently.  

Causal Forest (CF) [9]: Our initial method uses the propensity score for handling 

selection bias. CF, as a tree-based ensemble method, handles imbalanced and smaller 

datasets well. Each tree �  of �  trees in CF estimates treatment effects �����  by 

partitioning them to propensity score adjusted leaves based on their treatments. The CF 

estimates the treatment effects by averaging from � trees. 

Representation learning-based models: We also use representation learning-based 

models, namely, Treatment-Agnostic Representation Network (TARNet), and Counter-

factual Regression (CFRNet) [10]. These models learn a "balanced" representation that 

induces similar distributions between the treated and control groups. TARNet learns a 

shared covariates space for all instances and separate subspaces for instances of different 

treatment groups. CFRNet further applies the Integral Probability Metrics (IMP) as the 

distance between the distributions of treated and control groups and used to adjust the 

covariates subspaces. 

Generative Adversarial Nets for ITE (GANITE): GANITE utilizes Generative 

Adversarial Nets to directly model the counterfactual distributions in [11]. This approach 

generates the proxy counterfactuals 	
�� as the augmentation of the observational dataset 


 and uses the augmented dataset �
  to optimize an ITE inference network � for the final 

estimation.  

3. Results 

We identified 4,070 who had LDCT and 195,967 matched controls from OneFlorida+, 

where patients had LDCT have a higher rate of lung cancer (3.9% vs. 0.5%). 

Table 1. Baseline characteristics of the study population. 
 Had no LDCT Had LDCT Overall 

N=195,967 N=4,070 N=200,037 
Lung cancer 1,008 (0.5%) 157 (3.9%) 1,165 (0.6%) 

Age 63.8 (6.31) 63.8 (6.25) 63.8 (6.31) 
Female 97,839 (49.9%) 2,019 (49.6%) 99,858 (49.9%) 

Hispanic 26,293 (13.4%) 154 (3.8%) 26,447 (13.2%) 

non-Hispanic Black 33,740 (17.2%) 929 (22.8%) 34,669 (17.3%) 
non-Hispanic White 101,391 (51.7%) 25,99 (63.9%) 103,990 (52.0%) 

Other 34,543 (17.6%) 388 (9.5%) 34,931 (17.5%) 

BMI 29.7 (6.86) 29.0 (6.94) 29.7 (6.86) 
BMI unknown 53,751 (27.4%) 299 (7.3%) 54,050 (27.0%) 
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Current smoker 15,169 (7.7%) 1,886 (46.3%) 17,055 (8.5%) 

Former smoker 29,220 (14.9%) 1,521 (37.4%) 30,741 (15.4%) 

Never smoker 47,526 (24.3%) 48 (1.2%) 47,574 (23.8%) 
Smoking status unknown 104,052 (53.1%) 615 (15.1%) 104,667 (52.3%) 

Charlson comorbidity  2.40 (2.93) 3.58 (3.19) 2.42 (2.94) 

Chronic pulmonary disease 48,340 (24.7%) 2,296 (56.4%) 50,636 (25.3%) 

We first evaluated models’ prediction performance with mean squared error (MSE). 

As shown in Table 2, CF has the largest (worst) MSEs on both tasks. The 2 representation 

learning-based methods, i.e., TARNet and CFRnet, achieved comparative performance, 

while GANITE outperforms all other methods. We investigated models’ ATEs and find 

a consistent trend that the treatment effects of LDCT on lung cancer diagnosis are more 

significant than on mortality.  

Table 2. MSE, ATE and IF-PEHE on predictions of lung cancer diagnosis and mortality. 

Methods Outcomes MSE ATE IF-PEHE 

CF 
Lung cancer 0.027 (0.001) 0.033 (0.001) 1,310.76 (58.94) 

Mortality 0.029 (0.001) 0.022 (0.007) 552.23 (45.90) 

GANITE 
Lung cancer 0.003 (0.002) 0.144 (0.043) 795.94 (17.37) 

Mortality 0.005 (0.003) 0.063 (0.027) 501.66 (20.31) 

TARNet 
Lung cancer 0.006 (0.001) 0.251 (0.049) 872.36 (13.26) 
Mortality 0.007 (0.001) -0.064 (0.053) 626.23 (17.25) 

CFRnet 
Lung cancer 0.006 (0.001) 0.526 (0.050) 841.21 (12.62) 

Mortality 0.008 (0.001) 0.119 (0.023) 597.24 (14.29) 

4. Discussion 

We evaluated 4 machine learning-based causal models for counterfactual prediction to 

address whether LDCT LCS reduces lung cancer risk and mortality, and then provide 

personalize estimation of the ITE for clinical decision support. Comparing the 4 models, 

DL-based models showed superior predictive performance compared to the traditional 

causal forest model. Among the DL methods, GANITE outperformed TARNet and 

CFRnet, providing more accurate ITE estimates based on the IF-PEHE metric. 

Using OneFlorida+ network data, we confirmed that LDCT reduces lung cancer risk 

and mortality, aligning with RCT findings. This study is crucial as existing guidelines, 

largely based on age and smoking history, may inadequately stratify risk, leading to 

underutilization in high-risk patients and 'spill-over' in low-risk groups. Understanding 

an individual's ITE, precisely quantifying how LDCT can decrease lung cancer and 

mortality risks, empowers patients to make informed decisions tailored to their unique 

circumstances. With a causal model of ITE estimation, we can quantify the benefits of 

LDCT for each patient based on his/her unique medical characteristics. To showcase the 

models’ advantages, we expanded beyond standard LCS age groups to include (1) age 

between 55 and 77, and (2) age below 55, coupled with different smoking status: (1) 

current smokers, (2) former smokers, (3) non-smokers, and (4) unknown status. As 

shown in Table 3, we present 6 patients as examples. Among these patients, we can see 

the patient “6182” and “3471” benefit most from having an LDCT by reducing more 

than 10% of their absolute probabilities of getting lung cancer. While even though patient 

“853” is in the same age group, but as a non-smoker, has almost no benefit gain from 

LDCT. On the contrast, patient “105296” although does not meet the age criterion for 

LCS, however, because of he is a current smoker with a history of asthma, bronchitis, 

and chronic obstructive pulmonary disease among other clinical indicators of high lung 

cancer risk, our model deemed him will benefit from LCS with a 7.3% risk reduction. 
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By using GANITE to estimate ITEs for each patient as described above, physicians can 

quantify how much a patient benefits from receiving an LDCT, thus making personalized 

treatment recommendations based on these quantified scores.  

Table 3. Estimated ITEs of LDCT on lung cancer risk for selected patient samples. 

Patient ID Age group Age Smoking Status ����� �����
 ���� 

6182 

Age>55 

& <=77 

66 Current smoker 12.7% 1.6% -11.2% 

3471 61 Former smoker 12% 1.5% -10.5% 

853 63 Non-smoker <0.1% <0.1% <0.1% 

400 70 Unknown <0.1% <0.1% <0.1% 

105296 
Age <= 55 

51 Current smoker 8% 0.8% -7.3% 

73000 54 Non-smoker 0.6% <0.1% -0.6% 

�����
: the probability of getting lung cancer if receiving an LDCT; 

�����
: the probability of getting lung cancer if NOT receiving an LDCT; 

�����= ����� - �����
: benefits gained from receiving an LDCT versus NOT in terms of lung cancer risk. 

5. Conclusions 

In this study, we used causal inference methods to evaluate the impact of LDCT on 

lung cancer risk and mortality within the OneFlorida+ Clinical Research Consortium. 

We demonstrated the efficacy of these methods in reducing observational bias and 

provided estimates for ATE and ITE for a broader population. Future work will focus on 

model explainability to help patients and their providers understand what factors leads 

to the recommendations. 
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