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Abstract. Continuous intraoperative monitoring with electroencephalo 2 graphy 

(EEG) is commonly used to detect cerebral ischemia in high-risk surgical 

procedures such as carotid endarterectomy. Machine learning (ML) models that 
detect ischemia in real time can form the basis of automated intraoperative EEG 

monitoring. In this study, we describe and compare two time-series aware precision 

and recall metrics to the classical precision and recall metrics for evaluating the 
performance of ML models that detect ischemia. We trained six ML models to detect 

ischemia in intraoperative EEG and evaluated them with the area under the 

precision-recall curve (AUPRC) using time-series aware and classical approaches 
to compute precision and recall. The Support Vector Classification (SVC) model 

performed the best on the time-series aware metrics, while the Light Gradient 

Boosting Machine (LGBM) model performed the best on the classical metrics. 
Visual inspection of the probability outputs of the models alongside the actual 

ischemic periods revealed that the time-series aware AUPRC selected a model more 

likely to predict ischemia onset in a timely fashion than the model selected by 
classical AUPRC. 
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1. Introduction 

Continuous electroencephalography (EEG) is frequently used to detect cerebral ischemia 

during high-risk surgical procedures such as carotid endarterectomy (CEA)1. Typically, 

a neurophysiologist visually monitors the EEG for changes indicative of ischemia; 

however, such monitoring is mentally taxing and prone to error. Machine learning (ML) 

models that detect ischemia in real time can form the basis of automated intraoperative 

EEG monitoring. We have developed supervised ML models that output a prediction for 
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ischemia for each 20-second interval of EEG signals. Assuming that each 20-second 

interval is an independent data point, these predictions can be evaluated using classical 

metrics like precision and recall. However, ischemia is a time-dependent phenomenon

that occurs over a period, and in our application, a predicted ischemic period consists of

a series of contiguous 20-second intervals. Therefore, classical precision and recall 

metrics cannot capture the crucial time-series characteristics of ischemic periods.

FN TP TP FP TP TP FN FN TP FP

Prediction periods Ischemic periods

Figure 1. Illustrative examples of two ischemic periods (in orange) and three prediction periods (in blue). The 
tick marks on the arrow at the bottom represent 20-second intervals. The grey boxes at the top indicate whether 

a 20-second interval is a TP, FP, or FN. For this example, classical precision is 0.71 (TPs = 5 and FPs = 2) and 

classical recall is 0.62 (TPs = 5 and FNs = 3). Note that these precision and recall values ignore the overlap 

length and the overlap's position between the ischemic and prediction periods. 

Figure 1 presents illustrative examples of ischemia predictions to shed light on the 

limitations of classical precision and recall. Under the classical consideration, a predicted 

ischemic 20-second interval is either a member of the set of real ischemic intervals 

(referred to as a true positive, or TP) or not (referred to as a false positive, or FP), and a 

real ischemic 20-second interval is either a member of the set of predicted ischemic 

intervals (TP) or not (referred to as a false negative, or FN). Precision is the proportion 

of all predicted 20-second ischemic intervals that are, in fact, ischemic ��� ��� � ��� 	
, 
while recall is the proportion of all actual 20-second ischemic intervals that are predicted 

as ischemic ��� ��� � ��� 	
 . However, under time-series aware considerations, a 

predicted ischemic period (a series of contiguous intervals) may partially overlap with a 

real ischemic period, resulting in a prediction that is partly a TP and partly an FP. 

Consequently, the length of the overlap must be quantified, and the overlap's position 

must be considered. For example, a real-time ischemia-detection application must 

accurately predict the onset of an ischemia period (i.e., its "front-end") for the surgical 

team to respond in a timely fashion.

We now describe two time-series aware precision and recall metrics that have been 

described in the literature. Both employ a weighted score comprised of two terms, called 

detection and coverage, which are averaged across periods to determine either precision 

or recall (see Equation 1).

��
��������
���� � � � �
�
����� � �� � �	 � ���
�� 
            (1)

The range-based recall and precision (RPR)2 approach considers an ischemic 

period to be detected if there exists any overlap with any prediction periods. Two 

multipliers are applied to the length of overlap to determine the coverage. The first 

multiplier is determined by a positional bias and can be selected to favor an overlap 

occurring at the "front," "middle," or "end" of the ischemic period. If no positional bias 
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is desired, the "flat" value is employed. The second multiplier is cardinality, which 

emphasizes and rewards having fewer prediction periods for a given ischemic period. 

The time-series aware precision and recall (TaPR)3 approach employs flexible 

hyperparameters for the proportion of overlap required for precision (!") and recall (!#) 

for the detection term. The computation of the overlap is affected by the ambiguity of 

the time ranges of the ischemic periods. The ambiguous period is assigned an inverse 

sigmoid curve, which defines the area within which any portion of the prediction within 

the ambiguous region can be computed and added to the overlap. TaPR does not consider 

cardinality or positional bias, whereas RPR does not take into account tunable detection 

thresholds or ambiguous periods. 

In this study, we compare the area under the precision-recall curve (AUPRC) 

derived from time-series aware precision and recall computed using the RPR and TaPR 

approaches to the AUPRC derived from classical precision and recall for evaluating the 

performance of ML models that predict ischemia.  

2. Methods 

2.1. Data and modeling 

We created a training data set from intraoperative EEG recordings on 766 patients who 

underwent CEA between 2009 and 2017 at a large academic medical center. All EEG 

recordings captured eight channels: F3-P3, P3-O1, F3-T3, T3-O1, F4-P4, P4-O2, F4-T4, 

and T4-O2. Channels with odd numbers (1, 3) correspond to electrode placement on the 

left hemisphere, whereas channels with even numbers (2, 4) correspond to placement on 

the right hemisphere. A neurophysiologist annotated the time periods in each recording 

that were indicative of ischemia. We extracted 10 minutes of post-clamp EEG signal 

from each recording and partitioned it into 20-second intervals after applying low-pass 

(70Hz), high-pass (0.166Hz), and notch (60Hz) filters4. Since the risk of ischemia is 

highest during the first 10 minutes after the diseased carotid artery is clamped, we chose 

this time frame. Each 20-second interval yielded 111 features, the majority of which were 

computed from a Fourier Transform power spectrogram. Based on the 

neurophysiologists’ annotations, we labeled each 20-second interval as ischemia or no 

ischemia. 

We trained several supervised ML models to predict the ischemia / no ischemia 

labels. Since current state-of-the-art models for tabular data5 are tree-based, we trained 

random forest (RF) and XGBoost random forest models. We also included additional 

boosting models such as Histogram Gradient Boosting (HGB) and Light Gradient 

Boosting Machine (LGBM) classifiers. Other models included logistic regression (LR) 

and Support Vector Machine for classification (SVC). For each model, we obtained a set 

of 10 trained versions through 10-fold cross-validation. 

2.2. Evaluation 

Each model was evaluated on an independent test data set from the corresponding 

iteration of the cross-validation. With the prediction probabilities, we computed the 

AURPC from time-series aware precision and recall values using the RPR and TaPR 

approaches, as well as the AUPRC from the classical precision and recall values. To 
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calculate the time-series aware precision and recall, we concatenated the predictions 

from all patients into a single contiguous sequence. To ensure that there was no 

accidental continuity of a prediction period spanning two adjacent patients, we added 

padding between the predictions from the two patients. The padding consisted of 100 20-

second intervals, each of which was assigned a label of no ischemia and a prediction 

probability of zero. 

For each ML algorithm, we trained 1000 models from 1000 bootstrapped data sets 

and obtained the AUPRCs at each iteration of the bootstrap. We identified the model that 

was ranked first among the bootstrap iterations most frequently for each AUPRC 

approach and recorded how often that model was ranked first. To examine the behavior 

of models visually, we plotted the probability outputs of the models alongside the 

spectrogram of the signals at each channel and the labeled time ranges for patients who 

experienced an ischemic period. 

 
AUPRC Most frequently first-ranked model Percent iterations 

Classical LGBM 64.1 

RPR (front) SVC 95.5 

TaPR SVC 83.5 

Table 1. Most frequently first-ranked model for three AUPRC metrics and the percent bootstrapped iterations 

that the first-ranked model was the top model. 

3. Results 

Based on the time-series aware AUPRC, the most frequently first-ranked model was 

SVC for both RPR and TaPR approaches; it was the top model in 95.5% and 83.5% of 

the bootstrap iterations, respectively (see Table 1). Based on the classical AUPRC, the 

most frequently top-ranked model was LGBM; it was the top model in 64.1% of the 

bootstrap iterations (see Table 1). Visual examination of the predictions of SVC and 

LGBM showed that SVC was more likely to accurately predict the onset of an ischemia 

period than LGBM. Figure 3 provides an example of a patient. 

4. Discussion 

We found that the top-performing model differed between classical metrics and time-

series aware metrics, indicating that it is crucial to consider the adequacy of the 

evaluation metric used to compare the performances of EEG-based models to detect 

ischemia. Visual examination revealed that the behavior of the model with the highest 

time-series aware AUPRC was more suitable for the EEG monitoring application, as 

early detection of cerebral ischemia during surgery is crucial. 

5. Conclusions 

The advent of time-series-aware metrics provides researchers interested in predictions in 

time-series data with an improved means to evaluate models. Models that detect changes 
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in EEG are typically evaluated using classical metrics; however, the utilization of time-

series-aware metrics developed for other applications is better suited for our application.  

These metrics are relatively new, so their adoption, particularly for healthcare-

related applications, will take time. We note their benefits for the purpose of selecting an 

EEG-based model to detect ischemia during CEA. The next steps include using time-

series-aware metrics during training and calibration. 

 
Figure 2. An example patient's spectrogram (top panel) and the predicted probabilities for the SVC and LGBM 

models (bottom panel). The orange bar at the top indicates an ischemic period. The SVC model (in blue) detects 

the beginning of the ischemic period earlier than the LGBM model (in red).   
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