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Abstract. Representing knowledge in a comprehensible and maintainable way and 
transparently providing inferences thereof are important issues, especially in the 
context of applications related to artificial intelligence in medicine. This becomes 
even more obvious if the knowledge is dynamically growing and changing and when 
machine learning techniques are being involved. In this paper, we present an 
approach for representing knowledge about cancer therapies collected over two 
decades at St.-Johannes-Hospital in Dortmund, Germany. The presented approach 
makes use of InteKRator, a toolbox that combines knowledge representation and 
machine learning techniques, including the possibility of explaining inferences. An 
extended use of InteKRator’s reasoning system will be introduced for being able to 
provide the required inferences. The presented approach is general enough to be 
transferred to other data, as well as to other domains. The approach will be evaluated, 
e. g., regarding comprehensibility, accuracy and reasoning efficiency.  

Keywords. Answer set programming, cancer therapy recommendation, decision 
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1. Introduction 

1.1. Background 

At Dortmund-based St.-Johannes-Hospital, knowledge about experiences with cancer 

therapies has been collected for over two decades. First approaches of rendering the 

collected knowledge accessible and maintainable (especially for medical doctors) [12] 

comprised (1) a semi-formal mind map approach and (2) a formal approach based on 

answer set programming (ASP) [5]. While the first approach appeared to be practical by 

allowing for collecting knowledge easily through the creation of nodes in the mind map, 

the steadily growing and changing mind map has become more and more complex and 

thereby harder to maintain over time. For the second approach, the knowledge contained 

in the mind map was modeled manually in the form of formal rules, allowing for 

 
1 Corresponding author, daan.apeldoorn@uni-mainz.de 
* Equivalently contributing authors (shared first authorship) 

German Medical Data Sciences 2023 — Science. Close to People.
R. Röhrig et al. (Eds.)
© 2023 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI230709

161



automated inference of therapy recommendations. This approach already overcame some 

issues of the original mind map approach. However, despite its straightforward syntax, 

the approach of ASP generally requires that knowledge experts (in this case medical 

professionals) have prior technical knowledge regarding logic programming to fully 

comprehend a large logic program and in particular its semantics.  

In this paper, an approach is presented that can enrich the aforementioned 

approaches for overcoming the described issues. It is built on the InteKRator toolbox 

[3],  [8] which allows for learning a human-readable representation of the knowledge. 

An extended use of InteKRator’s reasoning system is described to be able to cover the 

semantics induced by the prior approaches. The resulting system is evaluated, e. g., 

regarding comprehensibility, accuracy and reasoning efficiency, and is fit for a potential 

multi-paradigm approach to be used in conjunction with [12].  

1.2. Objectives and Requirements 

The overall objective of the approach presented here is to learn comprehensible 

representations of cancer therapy knowledge collected for over two decades at 

St.-Johannes-Hospital in Dortmund, Germany (for preliminary work see [12]). Such an 

approach will be useful to enrich and support preliminary approaches.  

A steadily growing knowledge base should be able to assist medical experts in their 

decision-making processes. We therefore argue that such knowledge has to be 

represented in a human-readable way and it should be possible to transparently infer 

cancer therapy recommendations from provided patient attributes. Moreover, it should 

be possible to explain the inferred recommendations and easily maintain the knowledge 

to be able to reflect the dynamics of cancer research in an adequate way. The resulting 

approach should be general enough to be applied in other domains as well.  

In summary, the main contributions of this paper are: 

 Illustrating how medical knowledge can be learned from ASP programs using 

the InteKRator toolbox and how its reasoning system can be used in an extended 

way to reflect the inferences (i. e., answer sets) provided by ASP 

 Enriching inferred therapy recommendations with quantitative information 

 Providing explanations for the inferred recommendations 

 An evaluation of the new approach in comparison to and in conjunction with 

the two preliminary approaches.  

2. State of the art 

The state of the art is considered in two ways here: First, it will be referred to the current 

state and preliminary works at St.-Johannes-Hospital (Section 2.1). After that, the 

relevant current limitations of the InteKRator toolbox will be taken into account and it 

will be considered how to overcome them for this work (Section 2.2).  

2.1. Current State and Preliminary Works at St.-Johannes-Hospital 

Intensive cancer research yields a wide range of therapy types and pharmaceuticals for 

cancer therapies. Based on the patient and the properties of their cancer, different 
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therapies are eligible. Such therapies include medicinal treatments where different 

combinations of drugs are applied based on temporal schemes.  

During the past two decades the pharmaceutical department and the clinic of 

Hematology and Medical Oncology of the St.-Johannes-Hospital in Dortmund, Germany, 

have developed a structured collection of therapy plans for cancer patients based on 

clinical practice guidelines, and decision of an expert panel (tumor board), and individual 

experts. These therapy plans include patient requirements for their eligibility and therapy 

adaptations. The plans are also extended by additional information for treating physicians. 

Due to the rapid progress in cancer research, this collection (in the following referred to 

as mind map) is continuously growing with an average of 20,000 changes per year. The 

knowledge in this mind map is currently shared between over 125 hospitals and 50 

medical practices in the form of a (mind map-like) web application, which assists 

physicians in safely and efficiently finding suitable therapies for the individual patient. 

2.2. InteKRator’s Reasoning System 

InteKRator [8] is a practical result originating from research in the context of AI in games 

[1],[4].[6]. In [3], it has been proposed for using it in the context of medical applications. 

Originally, InteKRator had been designed to learn to infer actions from states of a game, 

assuming that states and actions are stemming from disjoint sets. Thus, the expressivity 

of InteKRator is usually limited to only one conclusion (action) for the provided input 

data. This paper presents a way to overcome this limitation for being able to derive 

multiple alternative therapy recommendations. 

2.3 Related Work 

To the best of our knowledge no other hospital compiles cancer therapy recommend-

dations in similar, manual fashion which is suitable for the utilization in expert systems. 

In the literature, systems that are similar to the proposed approach are often referred 

to as clinical decision support systems (CDSSs). In [11], the authors discuss the general 

properties of CDSSs and their risks and benefits. They distinguish between knowledge-

based systems and non-knowledge-based systems. In knowledge-based systems, the 

knowledge is created manually and maintaining such systems can become quite 

strenuous. In non-knowledge-based systems, the knowledge is built up using AI methods. 

Here, Watson for oncology (WFO) is one of the first implementations [10]. As in the 

presented approach, WFO is able to aid oncologists in finding suitable therapies for 

cancer patients. However, in systems like WFO, the knowledge is mainly obtained using 

purely machine-learning methods which allows the system to analyze clinical guidelines 

and update the knowledge base regularly. This results in the fact that such knowledge 

cannot be expressed in a human-readable and comprehensible form which prevents a 

direct proof that any learned knowledge is in fact medically correct. 

3. Concept 

The principal idea of the approach presented here is as follows: As a first step, semi-

synthetic data sets are derived from the original mind map, where each row of a data set 

represents a possible cancer patient. A possible cancer patient is any (meaningful) 
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combination of patient attribute values that occur in the mind map. For each possible 

cancer patient there exists a (possibly empty) set of therapy plans. A therapy plan is a 

sequence of different therapies where each therapy is of a different type (e.g., 

chemotherapy). One separate data set ��  is derived for each type of therapy, where � 

denotes the potential position of the therapy type in a therapy plan. Each data set �� is 

organized in n input columns and one output column, where every input column 

represents a patient attribute or a therapy type previously applied to the patient. The 

output column represents the �-th type of therapy applied to a patient. To obtain every 

possible cancer patient and the corresponding recommended therapy plans in form of 

such data sets, we will use the aforementioned ASP encoding of the mind map. As a 

second step, the InteKRator toolbox [8] is used to learn knowledge bases in the form of 

rules with exceptions (see [3]) from these data sets. Every learned knowledge base ��� 

represents the knowledge about the �-th therapy type of a planned cancer therapy. These 

knowledge bases are then used to infer the therapies of the respective type from the 

patient data. Figure 1 visualizes the workflow (for further details, see subsections).  

 

 

Figure 1. From Mind Map to Comprehensible Knowledge and Inferences: Multiple data sets are derived from 

a mind map by encoding the mind map as ASP and querying it with all combinations of possible patient input 

features for the �-th therapy type of a planned cancer therapy (dashed arrow). The data sets are used to learn 

knowledge bases ���  representing the knowledge of the �-th therapy type of a therapy plan (gear arrow). 

Inferred therapies are used as additional input for inferring the therapy for the next therapy type, resulting in 

an inference tree where the leaves represent the answer sets of the ASP approach from [12].  

 

3.1. Mind Map 

Our presented approach extracts knowledge that is encoded in the mind map2 by the St.-

Johannes-Hospital representing medical attributes or therapy names.3 A path from the 

root to a leaf represents a full therapy plan where the path’s nodes specify which 

therapies are recommended given the attributes of the path. Generally, therapy plans in 

this mind map can contain systemic therapy types, that is, chemotherapy, antibody 

therapy (pre- and post-operation), antihormone therapies (in the following also de-noted 

by CT, AbT(-PRE), and AHT, respectively), and operation (OP) as the local therapy type. 

Based on the patient, one or more medical therapy types can be recommended. However, 

the general order of the therapy types is set, i. e., a plan can start with chemotherapy, 

followed by an antibody therapy, an operation, a subsequent antibody therapy which can 

be accompanied or followed by an antihormone therapy.  Typically, for each systemic 

therapy type a selection of drugs is available. It is on the medical experts to choose the 

explicit drug composition for each individual patient. For more details, we refer the 

reader to [12]. 

 
2 The mind map used in this work dates back to 2015. Since then, only the amount of encoded therapy 

options was extended while the general structure and functioning of the graph structure remained unchanged. 
3 Note that the used graph structure differs from the classical decision tree [9] as nodes are both attributes 

and their possible values. 
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Example 1. Suppose a 45-year-old premenopausal, breast cancer patient named P1 

in an otherwise average/good general health who has a HER2-positive, ER/PR-positive, 

and node-positive tumor that does not need surgical intervention (which in this case 

means that an adjuvant therapy is desired) and who is additionally allergic to a substance 

group called anthracyclines. Figure 2 shows the different therapy plans that a medical 

expert can recommend to P1. 

In this way all possible therapy plans are stored in the mind map. 

 

 

Figure 2. An Exemplary Path of the Mind Map [12]: Nodes are either patient values or therapy recommend-
dations. (A more detailed discussion is provided in Example 1 and 2.) Note that since this figure originates 
from the mind map used at the St.-Johannes-Hospital in Dortmund, all labels are in German language (please 
see explanations in the text). 

 

3.2. Creation of Data Sets 

In [12], the authors present an ASP-based application called Mamma-DSCS that encodes 

the mind map’s knowledge for breast cancer therapies as a logic program. It allows to 

determine all possible therapy plans for a patient by adding the available patient values 

as instance data to the program. To show that the answer set program fully represents the 

therapy options and conditions of the mind map, the authors defined the instance data for 

each possible composition of patient values and compared the result of Mamma-DSCS 

with the therapy plan of the mind map.  

Example 2. To obtain the therapy plans for patient P1, we inspect the paths of the 

mind map that correspond to the patient’s values in (Figure 2). Each path begins with the 

following nodes: “Mamma-CA” (mammary carcinoma), “H+EPR+” (HER2-

positive/ER/PR-positive), and “nodal positiv” (node-positive). As the patient’s general 

health is specified as average to good, we get a first split, that is, one path includes the 

node “<50 Jahre, guter AZ” (younger than 50, in good general health), the other path 

includes “<50 Jahre, mäßiger AZ und/oder Komorbidität” (younger than 50, average 

general health and/or comorbidities). Each of these two paths split again, thereby 

providing us with four different chemotherapy options that are denoted by TAC, ETC, 

EC, and TCH.  However, a medical expert in this field is aware that the therapies TAC 
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and EC include anthracyclines, thereby rendering these two therapies inapplicable. This 

leaves two different paths each of which is followed up by a node that encodes the 

recommendation of an antibody therapy with Trastuzumab. After an ETC therapy, the 

patient receives a Trastuzumab therapy with a starting dose of 8mg every three weeks 

(“Trastuzumab (8mg) 3wö Start”) and a subsequent Trastuzumab therapy with 6mg 

every three weeks (“Trastuzumab (6mg) 3wö Folge”). If the patient should receive a 

TCH therapy as the chemotherapy, the starting dose is omitted. In both cases an 

antihormone therapy parallel to the antibody therapy is recommended via the node 

“parallel beginnend ANTIHORMONELLE THERAPIE”. As the patient is known to be 

premenopausal (“prä-menopausal”), in both paths an antihormonal therapy with 

Tamoxifen for 10 years (“Tamoxifen über 10J.”) or alternatively a Tamoxifen therapy 

for 5 years and a subsequent 5-year long therapy with aromatase inhibitors (“ggf. 

Tamoxifen 5J. gefolgt von AI 5 J.”) is recommended. 

Thus, the program that encodes the mind map’s knowledge and the information 

which therapies contain anthracyclines outputs that the patient either receives a 

chemotherapy named TCH that is followed up by the antibody therapy Trastuzumab or 

the doctor can recommend a chemotherapy called ETC with a Trastuzumab therapy that 

starts with a higher starting dose. Both therapy plans include an antihormone therapy 

with Tamoxifen/aromatase inhibitors parallel to the antibody therapy.  

We created the data sets to be processed with InteKRator by combining each 

instance data set of Mamma-DSCS with the respective output. As a result, we obtain a 

collection of semi-synthetic data sets comprising all representative instance data. 

Note that there are various ways to create data sets for the usage with the InteKRator 

toolbox. In fact, besides the manual compilation of data set, any structured collection of 

knowledge (in this case about therapy recommendations) can be used as input for 

InteKRator as long as it can be parsed to InteKRator’s straightforward syntax. 

3.3. Learning Comprehensible Knowledge Bases with the InteKRator Toolbox 

Since it should be possible to infer therapy plan recommendations from the learned 

knowledge (where each therapy plan contains multiple subsequent therapies), one 

separate knowledge base ���  will be learned from each data set �� . Thus, each 

knowledge base ��� will comprise the knowledge about one type of therapy involved in 

the therapy plan. The learning process is similar for all knowledge bases:  

(1) The knowledge about a therapy type is learned from the �-th data set �� using 

InteKRator’s learning module (see [2], Algorithm 1 for details), resulting in a 

knowledge base ��� in the form of rules with exceptions (see Figure 3). Missing 

values are not included in rule premises during the learning process.4  

(2) A revision of ��� is performed for every row of �� using InteKRator’s revision 

module: This adds some potentially missing rules on the bottom most level of 

��� that are needed for completeness to fully explain ��.
5  

These steps are repeated until one knowledge base is learned for every data set.  

 

 

 

 
4 For this purpose, the learning algorithm of the InteKRator toolbox has been modified, which will be 

included in one of the next releases of the InteKRator toolbox.  
5 Note that even without revision, already ≈ 99,98% of the ASP inferences could be covered.  
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Figure 3. Excerpt from the Learned Knowledge for AHT (antihormone therapy): Rules are denoted by 

“premise -> conclusion [p]” (with ^ used for conjunction, _ used to separate prefix and alternative 

therapy options, and p being the conditional probability of the conclusion given the premise). Starting on the 

topmost level, the knowledge can be easily read top-down as “Usually, there will be no AHT (with p ≈ 0.47).  

Except for attributes on the next level, where it is either no AHT or it is unknown. If, e. g., no AbT-PRE 

(antibody therapy pre-operation), no operation, epr_pos (ER/PR-positive), her_pos (HER2-positive) and 

schedule_adj (adjuvant therapy) is known (cf. 1st rule of the 3rd level), then the AHT will be either AI5 

(aromatase inhibitors) for at least 5 years followed by TMX5 (Tamoxifen) for at least 5 years, or TMX10 

(Tamoxifen) for at least 10 years (with p ≈ 0.51)”.  

 

3.4. Extended use of InteKRator’s Reasoning System 

Unfortunately, the resulting learned knowledge bases are less expressive than the ASP 

approach described in [12] (see also Section 1.1). To adapt the inferences to the answer 

sets of the preliminary approach from [12], the following extended inference approach 

has been developed using InteKRator’s reasoning module:  

(1) The knowledge base ���  is requested for inferring adequate therapies of a 

therapy plan.  

(2) For each therapy inferred from ���, the therapy serves as an additional input 

for inferring the therapy of a subsequent type from �����.  

These steps are repeated starting from � � 1 for all ��� (except for the last one for which 

only step (1) is executed).  

The described approach results in an inference tree, where tree leaves represent the 

answer sets of the original ASP [12] (see Figure 1). By this means, the answer sets can 

be adequately reflected when inferences are derived from the learned knowledge.  

4. Implementation 

The extended reasoning system from Section 3.4 is implemented as a prototype in Java 

using the InteKRator toolbox as a library. This results in a lightweight console 

application which is potentially easy to adapt and to integrate into a web application.  
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The inferences are based on the learned knowledge bases from Section 3.3, which 

are provided in plain text files. In conjunction with the knowledge being represented in 

a hierarchical way, this renders the knowledge easy to inspect and can support the 

creation of user interfaces later, e. g., to outline the most important aspects or to let a 

medical user browse the knowledge. Moreover, the learned knowledge bases are easy to 

revise or can be replaced by a new version in case parts of the knowledge changes.  

The source code of the prototype is available under the GNU General Public License 

(GPL) version 3.6 

5. Lessons learned 

5.1. Evaluation of and Comparison to the Mind Map and ASP-based solution 

Compared to the mind map and the ASP approach (see Section 2.1), the approach 

introduced here shows advantages concerning the comprehensibility of the represented 

knowledge, transparency of the provided inferences and reasoning time. The compre-

hensibility and transparency aspects are covered by InteKRator’s reasoning system, 

which allows for reporting the patient attributes from which the resulting inferences have 

been derived while adding quantitative information to the inferences (i. e., (conditional) 

probabilities of conclusions given attributes of possible patients).  

Example 3. For P1 from the previous examples, the ASP approach reports four 

therapy plan recommendations as encoded in the mind map (see Figure 2). One of the 

recommended plans comprises ETC for CT, H8-6 for AbT and AI5-TMX5 for AHT. For 

the same patient, the InteKRator approach additionally provides explanations and adds 

quantitative information. E. g., for CT of the therapy plan, the rule 

 

age_lte50 ^ ci_ant ^ gmc_good ^ her_pos ^ nodal_pos ^ schedule_adj -> CT_1.ETC_1.TCH [1.0] 

 

is provided, meaning that either ETC or TCH can be derived through this rule from the 

patient attributes (which holds for 100% of the cases in the data from which the rule had 

been learned). Similarly, e. g., for AbT, H8-6 can be derived through the rule 

 

AbT-PRE_0.NONE ^ OP_0.NONE ^ age_lte50 ^ epr_pos ^ gmc_good ^ her_pos ^ schedule_adj  

                                                                                                                               -> AbT_2.H8-6 [0.71]
7.  

 

Table 1 summarizes the comparison of the three approaches. Note that the overall 

number of rules is ≈ 3.5 times higher with the InteKRator approach. However, a large 

amount results from the knowledge bases being learned separately for each therapy type 

(see Figure 1). While this might induce redundancies, it may also contribute to the 

comprehensibility, as the knowledge can be easily read top down for each therapy of the 

respective type. Moreover, usually not all rules need to be considered since the rules 

covering the most common cases are usually located toward the top of the knowledge 

bases learned with InteKRator.  

 

 
6 https://gitlab.com/dapel1/sequentialdecisionsupport 
7 Rule weight rounded to two digits. 
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Table 1. Comparison of the Preliminary Approaches and the InteKRator Approach: While the knowledge 
learned by the InteKRator toolbox results in a larger number of rules (separated by therapy types), it allows for 
much faster reasoning with a top-down view on the knowledge. It also provides quantitative information by 
default and allows for maintaining knowledge by (re)learning or revision. While the learned knowledge learned 
in principle has a lower expressivity than ASP, in this case equivalency to ASP has been achieved.  

 Mind Map  ASP InteKRator 

Number of Rules (not applicable) ≈ 250          . 
153CT + 211AbT-PRE + 43OP 
+ 200AbT + 287AHT = 894 

Avg. Reasoning Time 

per Patient         
(not applicable) ≈ 3.35 sec.     .   ≈ 1.067 ‧ 10-2 sec.        . 

Readability       via node expansion formal rules formal rules (top-down) 

Quantitative Information no       no         yes   

Explanation of Inferences manually  via extensions [7] yes   

Maintainability 
manually, requires 
expert knowledge 

manually, requires 
expert knowledge 

by learning/revision, 
learning requires data 

Expressivity      

very high           
(nodes contain 

natural language) 
high       

in principle lower than ASP; 
but equivalent with the 

extensions in the presented 
use case             

 

5.2. Results 

While the semi-formal mind map and the formal ASP approach is manually modeled, 

the InteKRator approach allows for learning such knowledge from data. Due to the 

comprehensible top-down structure of the resulting knowledge bases, even larger 

amounts of such learned knowledge can be read top-down to gain an overview over the 

data. However, in comparison to ASP, the expressivity of the learned knowledge bases 

is limited. In this work, we overcome these limitations by learning one knowledge base 

for each therapy type and by exploiting the idea of an inference tree (cf. Figure 1).  

Apart from the possibility of automatically learning knowledge bases from data, 

InteKRator provides additional quantitative information both for the knowledge and the 

inferences thereof and offers the possibility of providing explanations of the inferences.  

Concerning the final accuracy, 100% of the therapy recommendations provided by the 

ASP approach could also be inferred with the InteKRator-based approach.  

6. Conclusion 

We have shown a symbiotic relationship between ASP programs and the InteKRator 

approach that can be exploited to facilitate the usage of expert systems in the medical 

field. By using semi-synthetic data sets of the ASP program from [12], InteKRator was 

able to learn knowledge identical to that encoded in the ASP program with respect to the 

inferences. The presented work, thereby, combines the positive aspects of both manual 

knowledge modeling and machine learning approaches to CDSSs. In this con-text, 

InteKRator provides several benefits for medical doctors especially in combi-nation with 

ASP-based expert systems: Based on the ASP-induced learned knowledge, InteKRator 

is innately able to provide explanations of recommended therapy plans and it adds a 

quantitative layer to the rules which might help medical doctors to incorporate the 
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recommendations more easily into their decisions. Moreover, it offers the possibility of 

directly learning from real-world patient data while offering faster reasoning.  

The presented approach is in principle also generalizable to other domains, pro-

vided that the manually modeled ASP is created anew in the context of the respective 

domain. The InteKRator-based learning of knowledge bases from real-world data is also 

applicable to other domains, provided that the data exists in an eligible format.  

Future work could comprise the creation of a clinical system based on the presented 

(or similar) techniques, e. g., by involving multiple independent approaches, which could 

increase the trustworthiness of such AI-related systems in medicine.  
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