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Abstract. The detection and prevention of medication-related health risks, such as 
medication-associated adverse events (AEs), is a major challenge in patient care. A 
systematic review on the incidence and nature of in-hospital AEs found that 9.2% 
of hospitalised patients suffer an AE, and approximately 43% of these AEs are 
considered to be preventable. Adverse events can be identified using algorithms that 
operate on electronic medical records (EMRs) and research databases. Such 
algorithms normally consist of structured filter criteria and rules to identify 
individuals with certain phenotypic traits, thus are referred to as phenotype 
algorithms. Many attempts have been made to create tools that support the 
development of algorithms and their application to EMRs. However, there are still 
gaps in terms of functionalities of such tools, such as standardised representation of 
algorithms and complex Boolean and temporal logic. In this work, we focus on the 
AE delirium, an acute brain disorder affecting mental status and attention, thus not 
trivial to operationalise in EMR data. We use this AE as an example to demonstrate 
the modelling process in our ontology-based framework (TOP Framework) for 
modelling and executing phenotype algorithms. The resulting semantically 
modelled delirium phenotype algorithm is independent of data structure, query 
languages and other technical aspects, and can be run on a variety of source systems 
in different institutions. 

Keywords. algorithms, adverse events, electronic health records, computable 
phenotypes 

1. Introduction 

The Medical Informatics Initiative (MII) aims to support medical research and improve 
patient care through IT solutions with real world data. This can support tailored and 
personalised diagnostic and treatment decisions, create new insights for effective and 
sustainable disease control, and contribute to the continuous improvement of healthcare. 
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Within the MII, clinical use cases shall bridge the gap between patient care, different MII 
strategies and clinical and bioinformatics research. One of such use cases is POLAR 
('POLypharmacy, drug interActions, Risks'), which uses the methods and processes of 
the MII to contribute to the detection of medication-related health risks, such as 
medication-associated adverse events (AEs) [1]. As described by de Vries et al., “an AE 
is usually defined as an unintended injury or complication that results in prolonged 
hospitalisation, disability at discharge or death, and is caused by healthcare management 
rather than the patient's underlying disease process” [2]. According to a systematic 
review on the incidence and nature of in-hospital AEs, 9.2% of hospitalised patients 
suffer an AE, and approximately 43% of these AEs are considered to be preventable [2]. 

AEs are documented in electronic medical records (EMRs) or can be identified using 
algorithms that operate on EMR. Such algorithms normally consist of structured filter 
criteria and rules to “identify individuals who exhibit certain phenotypic traits, such as 
the same diseases, characteristics, or set of comorbidities” [3], thus are referred to as 
phenotype algorithms (PAs). Mo et al. [4] and Chapman et al. [3] compiled desiderata 
for the development of EMR-based PAs that outline many important aspects to facilitate 
development and reusability. 

PAs must be represented in a standardised way to enable sharing and reuse in other 
institutions. Typically, models are shared in very heterogeneous formats and in many 
cases only in textual form, making the application to other institutions a very challenging 
task [5,6]. Other formats include specific programming or query languages such as R, 
Python and, in particular, the Clinical Quality Language, which has a high expressive 
power and supports the representation of complex phenotype definitions [7]. 

Many attempts have been made to create tools that support development of 
algorithms and application to electronic health records [8–10]. Yet, there are still gaps in 
terms of functionalities of such tools, such as standardised representation of algorithms 
and complex Boolean and temporal logic [9]. Especially complex logic is in fact of high 
importance for many PAs [5]. 

In this sense, the MII junior research group 'Terminology and Ontology-based 
Phenotyping (TOP)' (part of the MII SMITH consortium [11]) aims to develop an easily 
applicable ontology-based framework (TOP Framework) for modelling and executing 
PAs. The most important advantage of our approach is a clear separation between the 
modelling of the domain knowledge (by medical staff, biometricians, etc., i.e., non-IT 
experts) and the implementation. The semantically modelled PAs are thus independent 
of the structure of the data, query languages as well as other technical aspects and can be 
executed on different source systems. In this work, we focus on the modelling of PAs, 
i.e. domain knowledge (exemplified by the detection of adverse events) by domain 
experts. The ontological and technical aspects of the framework are outlined in the 
chapter 'Methods' and explained in more detail in separate publications. 

2. Methods 

2.1. Example Adverse Event: Delirium 

Delirium is an acute brain disorder that affects mental status and attention, triggered by 
an acute event (e.g., infection, surgery) [12]. The incidence of delirium is remarkably 
high, ranging from 4% to 54% depending on the patient population, screening method 
and study design [13]. Detection and prevention of delirium is a major challenge in 
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hospitals, as this condition is associated with a wide range of serious adverse outcomes, 
including mortality, increased length of stay, long-term cognitive impairment, and risk 
of institutionalisation (e.g., nursing home placement, hospital readmission) [14,15]. 
Despite its high prevalence and serious consequences, delirium is significantly 
underdiagnosed in clinical practice [16]. An algorithm that diagnoses delirium due to any 
cause based on factors automatically extracted from EMRs can provide rapid and 
continuous screening for prevalent delirium, as well as improved retrospective 
assessment. Such an algorithm should include more than the International Classification 
of Diseases, 10th Revision (ICD-10) diagnosis codes, as the incidence and prevalence of 
delirium is underestimated when determined by ICD-10-coded diagnoses alone [17–20]. 

Halladay et al. constructed an electronic prediction rule for prevalent delirium based 
on the NICE meta-analysis of risk factors for delirium, consisting of ICD-10 diagnosis 
codes for cognitive impairment as well as age, infection, and sodium level [21]. On the 
basis of this work as well as the evaluation of the performance of ICD-10 codes and 
antipsychotic medication use in the identification of delirium by Kim et al., we developed 
an algorithm for the automatic detection of delirium due to any cause in EMR data as 
part of the POLAR project [17,21]. The resulting algorithm was developed in the TOP 
Framework and is described in Section 3. 

2.2. Ontological Data Model of Phenotypes 

The data model used in the TOP Framework (TOP API) [22] is based on the Core 
Ontology of Phenotypes [23]. Here, we consider phenotypes as individual 
characteristics, such as the weight of a person, but also complex (composite or derived) 
properties such as the body mass index (BMI) or the sequential organ failure assessment 
score (SOFA score) of a person. Abstract entities instantiated by phenotypes are called 
phenotype classes. We distinguish between single (e.g., age, weight, height) and 
composite phenotypes (e.g., BMI, SOFA score), which are made up of other phenotypes. 

Single phenotype classes are specified by giving the title, data type, unit of 
measurement, description, medical terminology codes, etc. The terminology associations 
play the most important role. Established terminologies (such as Logical Observation 
Identifiers Names and Codes (LOINC), ICD-10, etc.) are used to semantically describe 
the phenotypes and enable comparability of the data, but also to map to the data sources 
and to generate and execute the necessary queries. 

The composite phenotype classes are specified by an evaluable expression 
representing either a phenotype class, a constant or a function with any number of 
arguments, allowing nesting. For example, the expression of the phenotype class BMI, 
which is calculated by dividing body weight by height to the square, can be represented 
as "quotient(weight, power(height, 2))". Not only mathematical, but also logical and 
ontological functions are supported, and the set of supported functions is extensible. 

2.3. Terminology- and Ontology-based Phenotyping Framework 

The TOP Framework consists of three main components (see Figure 1), namely a user 
interface (frontend), a REST server for storing phenotype definitions (backend), and 
various services that use phenotype models to perform specific tasks. In this section 
frontend, backend, and the service component for the execution of phenotypic queries 
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are outlined briefly. A detailed description of the whole framework is planned for future 

work, but for the time being documentation is available in our public GitHub repository3. 

 

 

 
Figure 1. TOP Framework Overview. Domain experts create and use phenotype models via the Phenotype 

Editor, while IT experts are responsible for implementing interfaces to clinical and trial data in Health Data 

Stores. The backend conforms to the TOP API specification for all inbound and outbound data flows. 

 

The TOP frontend is a JavaScript web application that allows domain experts to 

collaboratively manage organisations and repositories containing phenotype definitions. 

In the TOP Framework, organisations act as a simple permission system. Users only have 

access to public repositories or repositories of organisations to which they belong to. The 

frontend has an intuitive graphical user interface (Phenotype Editor), where phenotypes 

are displayed in a tree structure and metadata of a phenotype can be defined via input 

fields. Submissions are sent to the TOP backend via the TOP API. 

The most important component of the TOP Framework is the backend, where all 

phenotype models are stored in a relational database management system. The backend 

is a Spring Boot REST server that can be integrated in a local setup with an OAuth2 

authentication server. This allows institutions to reuse authentication mechanisms 

already in place and improve security. A plugin mechanism is available to connect 

phenotype services to the backend and extend its functionality. 

PAs can be defined by specifying (single or composite) phenotype classes as 

inclusion/exclusion criteria. The phenotypic query service generates queries for all 

criteria, translates them into the corresponding query language of the source system, and 

executes them using an adapter [24,25]. The query results are used to evaluate 

expressions of the composite phenotypes. The result of a PA is a set of individuals that 

match all criteria, i.e. possess the corresponding phenotypes. 

3. Results 

In this section, the modelling process of the TOP Framework as well as the resulting 

delirium algorithm are described in detail. 

When developing an algorithm in TOP, it is generally recommended to start with 

the basic data material needed to evaluate the algorithm. In the case of delirium, the data 

materials are properties of individuals that are directly related to entries in the EMR, 

namely the subject's current age, sodium level in blood, diagnostic conditions (e.g., 

 
3 Public repository on GitHub: https://github.com/Onto-Med/top-deployment 
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cognitive impairment), medication administrations, and performed operations. All of 
these properties are mapped to unrestricted single phenotype classes with a 
corresponding data type (see Table 1). They also need semantic descriptions by terms of 
standard terminologies (e.g., LOINC), which can easily be added in the TOP Framework 
by selecting a terminology and providing the codes of the terms. 
 

Table 1. Mapping of delirium items to TOP phenotype class types (excerpt). Categories were added to group 
similar phenotype classes. Other available data types: ‘string’, ‘date/time’. Abbreviations: International 
Classification of Diseases, 10th Revision (ICD-10), Anatomical Therapeutic Chemical (ATC) classification 
system, Operation and Procedure Classification System (OPS), Logical Observation Identifiers Names and 
Codes (LOINC) 

 Delirium item FHIR Resource (Coding 

System) 

TOP phenotype class type Data type 

Step 0 Parameters - Category - 

Step 1 Coded diagnoses Condition (ICD-10) Single Phenotype Boolean 

Age Patient & Encounter Single Phenotype numeric 

Antipsychotic 
medication 

Medication (ATC) Single Phenotype Boolean 

Operation Procedures (OPS) Single Phenotype Boolean 

Sodium level Observations (LOINC) Single Phenotype numeric 

Step 2 Age above 80 years - Restricted Single Phenotype Boolean 

Step 3 2/3 factors - Composite Phenotype Boolean 

Extended algorithm - Composite Phenotype Boolean 

 
The next step is to check whether the algorithm requires some properties of an 

individual to match certain criteria. These cases are modelled as restricted single 
phenotype classes (subclasses of the corresponding unrestricted single phenotype 
classes). For instance, the delirium algorithm contains a check for the subject’s current 
age to be higher than 80 years, which means that a restricted single phenotype class must 
be added as a subclass of the phenotype class ‘age’. This new restricted phenotype class 
has a value range restriction as shown in Figure 2. 
 

 
Figure 2. Input form to define value range restriction of the restricted single phenotype class for subject’s 
age above 80 years. One can also provide a set of valid values (enumeration). Quantifier and cardinality are 
used to restrict how many values of the phenotype should match the restriction. Other quantifier options are 
‘all values in range’, ‘exactly x values in range’, and ‘not more than x values in range’. 

 
In the final step of the modelling process composite phenotype classes are 

developed, which are made up of unrestricted or restricted single phenotype or other 
composite phenotype classes (as described in Section 2.2). Composite phenotype classes 
have an expression consisting of a function and a set of arguments, which can also be 
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expressions. To simplify the construction of expressions, the TOP frontend has a special 
input form (see Figure 3, where users can select a function from a list of available 
functions. In the next step, they are prompted for function arguments. An argument is 
defined by searching for a phenotype in the current repository, selecting a constant from 
a predefined list, or entering a numeric, date, or string value. The final modelling step is 
repeated until all algorithm computations are mapped to the TOP Framework. Typically, 
this results in a composite phenotype class that directly or transitively references all other 
phenotype classes in the algorithm. In the case of delirium, the phenotype ‘Extended 
algorithm’ was defined that combines all other phenotypes in a logical expression. If the 
expression evaluates to true, the subject is considered to have a delirium. 
 

 
Figure 3. TOP Framework Screenshot. Shown is the delirium repository that contains all phenotype classes 
(left side) relevant to the phenotype algorithm for detection of delirium. On the right side, the definition of 
the phenotype ‘Extended algorithm’ is displayed, with a formula that is composed from logical functions and 
other phenotype classes as arguments. A high-resolution version is available in the attachments. 

4. Discussion 

Several approaches have been used to develop EMR-based PAs. For instance, the Quality 
Data Model (QDM) has been reported as a promising format for use in clinical research 
[26–28]. The QDM allows PAs to be represented in a structured, machine-interpretable 
form using terminologies for clinical entities and features. Unfortunately, QDM has no 
support for sharing logic between algorithms, which could lead to reimplementation of 
subcomponents and make portability difficult [26]. 

Recent developments in machine learning and especially deep neural networks led 
to new models for patient classification based on EMR data [29,30]. At first glance, this 
development contradicts our approach, as we use rules-based algorithms based on expert 
knowledge. However, we believe that expert knowledge is the most important aspect for 
the development of PAs (rules-based or machine learning [31]). Furthermore, rules-
based algorithms are explainable, can be developed by domain experts, and are less error-
prone to the data quality of EMRs. PAs created with the TOP Framework are 
exchangeable in a standardised format (TOP API specification) and can even serve as 
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the basis for machine learning models, because the knowledge of the domain expert is 
already included in the model. 

An important limitation of the TOP Framework is its restriction to structured data. 
It is not possible to classify (or to calculate) phenotypes described in unstructured text. 
In order to combine our approach with unstructured data, natural language processing 
must be used to extract and to structure information that should be used by TOP PAs. 
The framework allows the creation of expressions of any complexity and even includes 
the specification of temporal logic. This allows a wide range of scenarios to be covered, 
but also negatively correlates with the match-rate of PAs [32]. 

Our next step is to extend the TOP Framework with new features. We plan to add 
more composite phenotype expression functions that are commonly used in PAs, and to 
support terminology versioning. Another important aspect is the provision of rich 
metadata and the adoption of existing standards to enhance the findability and 
interoperability of phenotype definitions. We will use the Resource Description 
Framework and established terms to provide appropriate metadata. Finally, we will 
model and publish further PAs from POLAR and other MII use cases utilising the TOP 
Framework. For example, the presented algorithm detects the presence of delirium due 
to any cause. In a subsequent step, this algorithm will be combined with potentially 
delirium-causing drugs to detect drug-induced delirium. 

5. Conclusion 

The TOP Framework is a platform that is designed for domain experts to define and 
manage phenotype specifications. In this work, we present an exemplary application of 
the framework to the modelling of an algorithm for the detection of the adverse event 
delirium. We show that the whole algorithm can be built with the framework, and we 
provide the resulting algorithm as a structured phenotype model. 
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