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Abstract. Although various clinical factors affect the diagnosis of Non-alcoholic 
Fatty Liver Disease (NAFLD), most studies only use single-source data such as 

images or laboratory data. Nevertheless, using different categories of features can 

help to get better results. Hence, one of the most important purposes of this paper is 
to employ a multi-group of effective factors such as velocimetry, psychological, 

demographic and anthropometric, and lab test data. Then, some Machine Learning 

(ML) methods are applied to classify the samples into two healthy and patient with 
NAFLD groups. The data used here belongs to the PERSIAN Organizational Cohort 

study at Mashhad University of Medical Sciences. To quantify the scalability of the 

models, different validity metrics are used. The obtained results illustrate that the 
proposed method can lead to an increase in the efficiency of the classifiers. 
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1. Introduction 

Diagnostic technologies such as imaging tests, blood tests, and liver biopsies can help 

diagnose NAFLD [1]. However, these tests are often invasive, expensive, and time-

consuming. Some strategies have been presented by applying ML algorithms using non-

invasive methods such as image-based methods and other biomarkers [2,3] but other 

important factors are not considered. Nevertheless, using different groups of features can 

help to have an efficient model. Hence, we aim to use multi-source features. To handle 

the behavior of outliers and missing data, we use some techniques in the preprocessing. 

Then some ML methods are employed to classify the samples into two healthy and 

patient with NAFLD groups. The rest of this study is organized as follows. The proposed 

approach is explained in Section 2. The experimental results and conclusions are 

presented in Sections 3 and 4 respectively. 
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2. The Proposed Method 

The proposed strategy consists of two main phases: feature engineering and classifi-

cation. In the first phase, some new groups of features are introduced. In the second phase, 

some ML methods are employed to classify the data into two healthy and patient with 

NAFLD groups. Liver function is associated with obesity and metabolic syndrome, and 

aging [4,5]. Therefore, we use anthropometric information such as BMI and 

demographic information like gender and age. In addition, it is shown in [6] that there is 

a relationship between the liver condition and the psychological situation. For instance, 

depression has been reported to be correlated with NAFLD [7,8]. Hence, such a 

relationship can be considered as an additional feature. To pre-pare psychology data, the 

questionnaire is self-administered by the participants and includes the following 3 

subscales: Depression, anxiety, and stress (DASS-21), Sleep quality (PSQI), and 

Occupational stress (administrative personnel SOS and medical personnel HSS-35). Any 

disruption in liver function can affect blood flow and alter the velocimetry data. For 

example, patients with NAFLD often exhibit multiple cardiovascular risk factors [9] 

which can lead to changes in hepatic blood flow velocity [10]. In order to conduct the 

velocimetry test, a trained physician used the SphygmoCorXCEL electrical module 

(Illinois, USA). Compared with the image-based diagnosis alone, the image and 

laboratory test-based combination model is more effective [11,12]. In laboratory tests, to 

perform cell counting, biochemistry, hormonal, urinalysis, and rapid fecal occult blood 

(FOB) tests, sampling is done after 10 to 12 hours of fasting. In such cases, Liver 

Craniocaudal Diameter is measured using imaging. After collecting the data, outlier data 

are detected based on comparing percentiles for each predictor and the median 

imputation is used to deal with missing data. A total of 47 variables are used as predictors. 

To find the best model, XGboost, Support Vector Machines (SVM), and Neural 

Networks (NNs) are used [13,14]. The efficiency of the algorithms is compared based 

on the confusion matrix and some indicators including precision, accuracy, recall, F-1. 

The Flowchart of the proposed diagnosis model is shown in Figure 1. 

 
Figure 1. Flowchart of the diagnosis model. 

3. Results 

The dataset belongs to Mashhad Cohort Center in Iran. Ethics committee approval was 

received for this study from Mashhad University of Medical Sciences. Ethics committee 

approval number is IR.MUMS.REC.1401.354 and Dr. Mohammad Ali Kiani is the 

chairperson. The total number of samples in this case study is 1118, 42.94% (480) of 

whom have NAFLD. Before applying the models to the data, we use anomaly detection 

technique and two strategies removal and imputation (median) are applied to deal with 

NaN values. To diagnose NAFLD, we use a NNs, XGboost, and SVM. In the NN model, 
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we use Grid Search to find the optimal parameters. The results of these tests are listed in 

the next table. As can be seen from Table 1, the XGboost model with the imputation 

strategy has the best result. By employing all features as predictors for XGboost, it has 

the best accuracy (Table 2).  

Table 1. The accuracy of ML methods according to different ways of dealing with missing data 

Ways 
Outlier 

removal 
NN XGBoost SVM 

Impute- 

Median 

Yes 0.82 0.85 0.72 

No 0.73 0.72 0.71 

Missing 

values removal 

Yes 0.80 0.83 0.71 

No 0.79 0.71 0.70 

Table 2. Evaluating different categories of predictors on XGboost 

Predictors 
Macro average 

Precision Accuracy Recall F1 

Demographic and 

anthropometric 
0.74 0.73 0.76 0.73 

Laboratory 0.63 0.63 0.63 0.62 

Psychology 0.45 0.46 0.49 0.41 

Velocimetry 0.67 0.67 0.65 0.65 

All 0.84 0.85 0.89 0.83 

4. Conclusions 

It is crucial to discuss how to optimally apply different non-invasive assessment 

techniques and present a comprehensive assessment to diagnose NFLD. Most studies in 

this application only use images or laboratory data. Nevertheless, using different groups 

of features can help to have a more applicable model. Hence, in this study, we utilize a 

multi-group of effective factors. The data belongs to the Cohort study at Mashhad 

University of Medical Sciences. Then some ML models are employed to classify the data 

into two healthy and patient with NAFLD groups. Since XGBoost is a gradient boosting 

algorithm that uses an ensemble of decision trees trained in parallel, resulting in faster 

and more efficient convergence, superior handling of missing values, and easier 

parameter tuning compared to SVM and NNs in specific situation. The results show that 

XGBoost has the highest accuracy by applying the proposed categories of features. 
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