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Abstract. We propose a framework for provision of decision support through the 

continuous prediction of recurring targets, in particular clinical actions, which can 
potentially occur more than once in the patient's longitudinal clinical record. We 

first perform an abstraction of the patient's raw time-stamped data into intervals. 

Then, we partition the patient's timeline into time windows, and perform frequent 
temporal patterns mining in the features' window. Finally, we use the discovered 

patterns as features for a prediction model. We demonstrate the framework on the 

task of treatment prediction in the Intensive Care Unit, in the domains of 
Hypoglycemia, Hypokalemia and Hypotension. 
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1. Introduction 

Deciding upon a patient’s treatment can be a complicated task, as it entails dealing with 

continuously arriving streaming data of different sources, which must be constantly 

analyzed and combined with medical knowledge. Current solutions suggest the usage of 

known medical guidelines [1–3] or learning the optimal treatment anew, based on 

historical data, using reinforcement learning [4, 5]. In this study, we propose a different 

approach, which tries to continuously predict the next action that an experienced 

physician would be likely to perform, in a context similar to that of the current patient's, 

by learning from a large dataset of similar patients. 

First, we convert the raw time-stamped clinical data into intervals which represent 

meaningful abstract concepts. Then, we partition the patient's timeline into feature and 

target time windows and mine frequent patterns within the feature windows. Next, we 

use these patterns as features to predict the dosage given in the target window, using a 

two-step machine learning approach which first determines the need for therapy, and if 

relevant, predicts the actual dose. 

To implement this framework, we also integrate two temporal-analysis methods: 

knowledge-based temporal abstraction (KBTA)[6], which converts time intervals of raw 

time-stamped data into intervals which represent meaningful concepts; and frequent 
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pattern detection using KarmaLego [7]. It discovers Time-Interval Relation Patterns, 

which have been previously used as features for machine learning models [8, 9].

To demonstrate the framework’s ability to predict treatment, we applied it on the 

MIMIC-IV [10] dataset, to three different medical domains within the Intensive Care 

Unit (ICU) area: Hypoglycemia, Hypokalemia and Hypotension.

2. Methods

2.1. Computational Methods

To convert raw time-stamped data into time intervals, we first apply the KBTA method. 

Next, we partition the time intervals into the following time windows: (1) Features Time 

Window (��) - The time window from which data is collected to be used in a prediction 

model. (2) Target Time Window (��) The time window in which the outcome class or 

value should be predicted. (3) Prediction Gap (��) - A time window starting at the end 

of �� and ending at the start of ��. These time windows form an instance, which is an 

entity that is constructed from the sequence of Time Windows: �� , �� and �� .

Instance Gap (��) is the gap between the start time of two consecutive instances. The 

sizes of ��, ��, �� and �� (denoted as ����, ����, ���� and ����, respectively), are 

supplied by the end user. Figure 1 presents a visual illustration of the instances produced 

from a given patient’s timeline.

Figure 1. Instances extracted from a patient's time series.

After partitioning the patient’s timelines into instances, a set of all instances 

(regardless of patient’s association) is created. The instances are partitioned to train and 

test sets, and are grouped into two classes: a positive class for instances which received 

treatment in �� , and a negative class for those who did not. We then apply the 

KarmaLego algorithm for frequent pattern discovery, on �� of all instances in the train 

set, for each class separately (this division is important, as a pattern might meet the 

frequency condition only in a specific class, but not in the whole dataset). Next, we 

search for the set of mined patterns in the whole dataset, and compute the pattern’s 

statistical characteristics in each instance, according to the statistics type provided by the 

user, (for example: pattern mean duration, horizontal support, etc.). We then use these 

characteristics as features in a machine learning model. First, we predict whether 
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treatment should be administered using Random Forest Classifier, and then we predict 

the dosage using Gradient Boosting Regressor. 

2.2. Evaluation Methods 

The dataset which was used for the evaluation of the proposed framework is the Medical 

Information Mart for Intensive Care (MIMIC) IV dataset  [10] . It contains the clinical 

data of over 40,000 patients at the Beth Israel Deaconess Medical Center. Due to 

computational limitations, for each experiment, a subset of 50-100 patients was 

considered. To obtain enough positive samples, we used a subset of patients which 

received a relevant diagnosis at some point in their timeline. We performed evaluation 

on the following ICU clinical domains: Hypoglycemia - dextrose given IV or PO (mg); 

Hypokalemia - potassium chloride (mEq); Hypotension - fluids in the form of dextrose 

or sodium chloride solutions (mL), dopamine (mg) and norepinephrine (mg). We used 

the Area Under the ROC Curve (AUC) to estimate the framework’s ability to detect non-

treatment, and the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 

their normalized versions (divided by the standard deviation) NMAE and NRMSE. 

3. Results 

We present the resulting performance metrics of the framework, with two sets of 

configurations, applied to the data of the different ICU clinical domains. Both sets 

included ���� 	 
��
���� and ���� 	 ��
����. Table 1 presents the results for no 

prediction gap, and mean pattern duration as the feature type. Table 2 presents the results 

for a prediction gap of two hours and horizontal support as the feature type. In both cases, 

the framework presented high AUC scores, implying that it was able to differentiate well 

between treatment and non-treatment cases. In addition, both configurations resulted in 

����<1 and �����<1, meaning that the errors were less than one standard deviation. 

In general, the results were surprisingly good even when a gap was used before the 

prediction window, suggesting the possibility of providing an advance alert to a therapy. 

Table 1. Experiments results for the Hypoglycemia, Hypokalemia and Hypotension domains. Experimental 

configuration: |FW| = 24 hours, |TW| = 4 hours and |PG| = 0, Feature Type = mean duration. 

Domain Treatment AUC MAE RMSE NMAE NRMSE 
Hypoglycemia Dextrose 0.947 2.389 4.671 0.355 0.693 
Hypokalemia Potassium chloride 0.8 0.27 1.976 0.041 0.298 

Hypotension 

Fluids 0.928 32.15 60.359 0.392 0.736 

Dopamine 0.944 10.08 45.951 0.076 0.346 

Norepinephrine 0.942 0.237 0.653 0.184 0.506 

Table 2. Experiments results for the Hypoglycemia, Hypokalemia and Hypotension domains. Experimental 

configuration: |FW| = 24 hours, |TW| = 4 hours and |PG| = 2 hours, Feature Type = horizontal support. 

Domain Treatment AUC MAE RMSE NMAE NRMSE 
Hypoglycemia Dextrose 0.937 2.42 4.66 0.363 0.699 

Hypokalemia Potassium chloride 0.772 0.916 3.548 0.193 0.707 

Hypotension 

Fluids 0.933 37.14 71.347 0.38 0.73 

Dopamine 0.95 13.61 51.126 0.102 0.383 

Norepinephrine 0.961 0.416 1.03 0.22 0.545 
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4. Discussion and conclusions 

Medical treatment decisions are complex. Current solutions include using medical 

guidelines, which require a pre-determined diagnosis; and reinforcement learning 

approaches, which include learning optimal actions and require a large amount of data 

and a long time span to include long-term effects of actions. In this study, we proposed 

a different approach, which aims to predict the most probable action based on the 

collective experience of multiple physicians in similar situations. 

First, we introduced a window partitioning algorithm, and provided a scripting 

language that supports the framework's flexibility. Next, we performed frequent pattern 

mining. Then, we used the patterns in a two-step prediction algorithm for treatment 

prediction, which first makes the binary prediction, of whether any treatment should be 

given, and if relevant, predicts the medication’s dosage. We also introduced the usage of 

a prediction gap, which resulted in surprisingly good results. This can potentially allow 

the medical teams to receive an advance notification of necessary future actions.  

The framework demonstrated its effectiveness in three medical domains: 

Hypoglycemia (dextrose treatment), Hypokalemia (potassium chloride treatment) and 

Hypotension (dopamine, norepinephrine, and fluids treatments). This study had several 

limitations, such as using the data of a single hospital, and including only patients which 

had a relevant diagnosis at some point during their stay. Thus, we aim to enhance our 

dataset in the future. 
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