
FHIR DataProvider for ReactAdmin: 

Leveraging User Interface Creation for 

Medical Web Applications 

Raphael SCHEIBLE 
a,1, David ALKIERb, Justus WENDROTHb, Julian MAYERb and 

Martin BOEKERa 

a
 Institute for AI and Informatics in Medicine, University Hospital rechts der Isar, 

Technical University Munich, Munich, Germany 
b

 School of Computation, Information and Technology, Technical University Munich, 
Munich, Germany 

Abstract. In medical data science, FHIR provides an increasingly used information 

model, which will lead to the creation of FHIR warehouses in the future. To 

efficiently work with a FHIR-based representation, users need a visual 
representation. The modern UI framework ReactAdmin (RA) enhances usability by 

leveraging current web standards such as React and Material Design. Rapid 

development and implementation of usable modern UIs is made possible by its high 
modularity and many widgets available in the framework. For data connection to 

different data sources RA needs a DataProvider (DP), which maps the 

communication from the server to the provided components. In this work, we 
present a DataProvider for FHIR that enables future UI developments for FHIR 

servers using RA. A demo application demonstrates the DP's capabilities. The code 

is published under MIT license. 

Keywords. FHIR, User-Computer Interface, Medical Informatics Applications 

1. Introduction 

Data warehouses are one of the foundations of medical data science. To realize such 

warehouses, i2b2 [1] and transmart [2] are popular applications. In the last years, Fast 

Healthcare Interoperability Resource (FHIR) gained popularity as a common data format, 

especially in the context of information models for mobile and web applications as well 

as medical devices [3]. Besides the reference FHIR server implementation HAPI FHIR 

[4], other implementations such as Blaze [5] and LinuxForHealth (former IBM) FHIR 

server [6] were released promising higher performance. In order to provide easy access 

of data to users like MDs, user interfaces (UI) are required [7]. UIs are constantly 

evolving and often show much potential in terms of usability in the medical domain [8]. 

With the medical mesh browser [9], we recently demonstrated that, the usability can be  

 

 

 
1  Corresponding author, AIIM, Klinikum rechts der Isar der Technischen Universität München, 

Ismaninger Str. 22, 81675 München, Germany; E-mail: raphael.scheible@tum.de. 

Healthcare Transformation with Informatics and Artificial Intelligence
J. Mantas et al. (Eds.)

© 2023 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI230436

110



improved [10] with certain decisions made on used UI technology. The framework 

ReactAdmin (RA), which uses React and Material Design, was chosen for the UI. It uses 

DataProviders (DP) to bridge and abstract the communication of its widgets to certain 

backend technologies. By developing new data providers, new backend technologies can 

be made compatible with the framework to rapidly create a usable and modern UI. We 

present a FHIR data provider and show its current capabilities within a demo application. 

2. Methods 

2.1.  DataProvider 

Each DP implements specific functions which are internally called by the widgets 

included in RA to access FHIR resources (cf. Table 1). Additionally, we even 

implemented a special feature, which allows the FHIR search operators to be used within 

the filter functionality of RA. Another exceptional requirement of FHIR compared to 

regular APIs is its characteristic to send sparse responses as answers to a request: for 

empty fields in a FHIR resource, the server neglects this field in the returned JSON 

representation leading to a missing key. RA expects the returned fields to be known and 

fully presented, otherwise the application crashes using its default widgets. One solution 

is to create customized widgets derived from the default widgets to handle these cases of 

missing keys. Alternatively, the FHIR Extender can be used, which solves the missing 

key problem by extending defined FHIR resources to some degree based on a manually 

set configuration. It populates the expected FHIR expression with empty default values 

for each required resource. When FHIR resources are sent to the server, they are reduced 

based on the same configuration. To assure correctness and minimize errors, unit tests 

were developed for all components of the DP. Additionally, a continuous integration (CI) 

process was designed which checks these tests to pass in the git repository and can be 

used to publish versioned releases. The main code of the DP is written in Typescript. 

Table 1. List of all required DP functions, its usage meaning and mapping to the FHIR server 

Method Usage Mapping 

getList Search for resources GET 

{baseURL}/{res}?_summary=count&{param=value}

* 
GET {baseURL}/{res}?{param=value}* 

getOne Read a single resource by id GET {baseURL}/{res}/{id} 

getMany Read a list of resource, by 
ids 

GET {baseURL}/{res}/_id={val1,val2,val3} 

getManyReference Read a list of resources 

related to another one 

GET 

{baseURL}/{res}?target=value&{param=value}* 

create Create a single resource POST {baseURL}/{res} (id is returned by server in 
header) 

update Update a single resource PUT {baseURL}/{res}/{id} 

updateMany Update multiple resources PUT {baseURL}/{res}/{id} (multiple times) 

delete Delete a single resource DELETE {baseURL}/{res}/{id} 

deleteMany Delete multiple resources DELETE {baseURL}/{res}/{id} (multiple times) 

2.2. Demo Server 

For demo purposes, we set up a FHIR server environment. We picked the well tested and 

established LinuxForHealth FHIR server. For easy deployment docker was used. We 

R. Scheible et al. / FHIR DataProvider for ReactAdmin 111



generated a plausible FHIR test dataset using Synthea [11] for the test application. The 

test dataset consists of Patient resources representing 250 alive and 4 deceased patients 

in the age of 0-100 years. Data were generated with Location set to the state of 

Messachusetts, all disease modules contained in Synthea used and a patient history of up 

to 10 years allowed, leading to 10113 Providers, 82760 Observations, 11212 Conditions 

and 463 Organizations and Practitioners. The server was filled with the data via a python 

script. 

2.3. Demo Application 

The demo application is a full featured web application with authentication. Therefore, 

RA offers the interface for an AuthProvider, for which we implemented one specifically 

for the LinuxForHealth FHIR server. The rest of the application was mainly realized by 

the standard RA components List, Edit and Show to visualize the resources from the 

FHIR server. Inside the List component we used different RA components such as 

ArrayField to show the telefone of a Patient, DateField to show the birth date of a Patient 

or the TextField to display the status of an Observation. Within a List component, 

pagination allows the dataProvider to only return a subset of resources to be rendered. 

Users can change the page to browse through all resources. 

3. Results 

3.1. DataProvider 

The DP supports the FHIR standard and can parse arbitrary FHIR resources. Further, it 

can make use of the FHIR search feature to apply filters to specific fields. The FHIR 

Extender works with simplex structures, but has problems with nested and more complex 

FHIR structures using 1:N relations. The unit tests cover 100% of functions and 99.20% 

of all code. Currently, the DP fully supports the LinuxForHealth FHIR server and the 

HAPI FHIR server for read operations. It is released under the MIT license at 

https://gitlab.com/mri-tum/aiim/libs/ra-data-fhir. 

3.2. Demo Application 

The demo application starts with a Login page which is automatically displayed due to 

the plugged in AuthProvider. Further, 11 views for show, edit, create, and list for multiple 

FHIR resources are implemented (cf. Table 2). Two of the list views are enabled to filter 

for certain criterias. To handle missing keys, the FHIRExtender is applied by default and 

in one case we used one custom component. 

Table 2. List of implemented views of the demo and its properties. 

Resource Show Edit List List filter Create 
Patient + + + Patient name + 

Observation + - + Patient ID and date - 

Organization + + + - - 

Practitioner + - + - - 

R. Scheible et al. / FHIR DataProvider for ReactAdmin112



4. Discussion 

Here we present a DP as a first step towards using RA in combination with FHIR servers 

in a demo application. However, in a production scenario, we would recommend more 

sophisticated authorization mechanisms which could be realized using KeyCloak. 

Further, currently the demo misses delete operations, as for many FHIR structures it 

would require recursive deletion. FHIR resources are validated only on server side, since 

validation inside the DP would significantly increase its complexity. Thus, no explicit 

FHIR profiles are implemented on client side, but implicitly by the usage of the resource 

properties of the application. We solved the issue of missing keys by the FHIR Extender. 

However, its default values should be selected with caution, as otherwise it could lead to 

missing data due to the reduction step while sending data to the server. In its current state, 

the FHIR Extender is limited to 1:1 relations for nested structures. Here, more work is 

required to make it universally compatible. The present DP is limited to run flawlessly 

in combination with the LinuxForHealth FHIR server. Compatibility with the HAPI 

FHIR server is only given for read operations. In the future, support for more FHIR 

servers is desired. 

5. Conclusion 

With this work, we have taken the first step to create UIs with RA on top of FHIR servers. 

The problem of sparse FHIR resources was solved by extending and reducing it using 

FHIR Extender. Our demo application demonstrates the capabilities and potential of this 

technology. 

Acknowledgements 

Supported by the German Ministry for Education and Research (FKZ 01ZZ1804A). 

References 

[1]  Murphy SN, Weber G, Mendis M, Gainer V, Chueh HC, Churchill S, et al. Serving the enterprise and 

beyond with informatics for integrating biology and the bedside (i2b2). J Am Med Inform Assoc JAMIA. 
2010 Apr;17(2):124–30. 

[2]  Scheufele E, Aronzon D, Coopersmith R, McDuffie MT, Kapoor M, Uhrich CA, et al. tranSMART: An 

Open Source Knowledge Management and High Content Data Analytics Platform. AMIA Jt Summits 
Transl Sci Proc AMIA Jt Summits Transl Sci. 2014;2014:96–101. 

[3]  Lehne M, Luijten S, Vom Felde Genannt Imbusch P, Thun S. The Use of FHIR in Digital Health - A 

Review of the Scientific Literature. Stud Health Technol Inform. 2019 Sep 3;267:52–8. 
[4]  HAPI FHIR - The Open Source FHIR API for Java [Internet]. [cited 2023 Mar 13]. Available from: 

https://hapifhir.io/ 

[5]  Blaze [Internet]. Samply; 2023 [cited 2023 Mar 14]. Available from: https://github.com/samply/blaze 
[6]  LinuxForHealth/FHIR: The LinuxForHealth FHIR® Server and related projects [Internet]. [cited 2023 

Mar 14]. Available from: https://github.com/LinuxForHealth/FHIR 

[7]  Prasser F, Kohlbacher O, Mansmann U, Bauer B, Kuhn KA. Data Integration for Future Medicine 
(DIFUTURE). Methods Inf Med. 2018 Jul;57(S 01):e57–65. 

[8]  Bin Azmat S, Hanif MK, Zia U, Rehman AU, ul Haq I, Shahzad I. Cognition based user interface design 

for healthcare systems. Int J Comput Sci Netw Secur. 2019;19:177–85. 

R. Scheible et al. / FHIR DataProvider for ReactAdmin 113

https://github.com/LinuxForHealth/FHIR
https://hapifhir.io/
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt


[9]  Scheible R, Strecker P, Yazijy S, Thomczyk F, Talpa R, Puhl A, et al. A Multilingual Browser Platform 

for Medical Subject Headings. In: Informatics and Technology in Clinical Care and Public Health. IOS 

Press; 2022. p. 384–7.  
[10] Strecker P, Boeker M, Buechner S, Scheible R. Usability Evaluation of a Modern Multilingual MeSH 

Browser. In: Advances in Informatics, Management and Technology in Healthcare. IOS Press; 2022. p. 

37–40. 
[11] Walonoski J, Kramer M, Nichols J, Quina A, Moesel C, Hall D, et al. Synthea: An approach, method, 

and software mechanism for generating synthetic patients and the synthetic electronic health care record. 

J Am Med Inform Assoc JAMIA. 2018 Mar;25(3):230–8. 

R. Scheible et al. / FHIR DataProvider for ReactAdmin114

https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt
https://www.zotero.org/google-docs/?u6oDnt

