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Abstract. Autism spectrum disorder (ASD) is a developmental disability caused 
by differences in the brain regions. Analysis of differential expression (DE) of 

transcriptomic data allows for genome-wide analysis of gene expression changes 

related to ASD. De-novo mutations may play a vital role in ASD, but the list of 
genes involved is still far from complete. Differentially expressed genes (DEGs) 

are treated as candidate biomarkers and a small set of DEGs might be identified as 

biomarkers using either biological knowledge or data-driven approaches like 
machine learning and statistical analysis. In this study, we employed a machine 

learning-based approach to identify the differential gene expression between ASD 

and Typical Development (TD). The gene expression data of 15 ASD and 15 TD 
were obtained from the NCBI GEO database. Initially, we extracted the data and 

used a standard pipeline to pre-process the data. Further, Random Forest (RF) was 

used to discriminate genes between ASD and TD. We identified the top 10 
prominent differential genes and compared them with the statistical test results. 

Our results show that the proposed RF model yields 5-fold cross-validation 

accuracy, sensitivity and specificity of 96.67%. Further, we obtained precision and 
F-measure scores of 97.5% and 96.57%, respectively. Moreover, we found 34 

unique DEG chromosomal locations having influential contributions in identifying 

ASD from TD. We have also identified chr3:113322718-113322659 as the most 
significant contributing chromosomal location in discriminating ASD and TD. Our 

machine learning-based method of refining DE analysis is promising for finding 

biomarkers from gene expression profiles and prioritizing DEGs. Moreover, our 
study reported top 10 gene signatures for ASD may facilitate the development of 

reliable diagnosis and prognosis biomarkers for screening ASD. 
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1. Introduction 

Autism spectrum disorder (ASD) is a developmental disability characterized by social 

communication, interaction, and restricted or repetitive behaviors or interests [1,2]. It is 

caused by environmental and genetic factors. Studies on gene expression can help us to 
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identify the protein that is primarily responsible for ASD. Moreover, Differential gene 

expression study helps to understand the biological differences at the genetic level be- 

tween typical and diseased conditions [3]. Many technologies can capture gene 

expression from the DNA or RNA such as Microarray DNA, qPCR, and RNAseq [4]. 

However, these methods have the disadvantage of high cost and time-consuming. 

Although the list of risk genes implicated by de-novo mutations is growing, it is still 

very likely far from complete, with an estimated full set of ASD genes ranging from 

several hundred to more than 30,000. In the search for additional de-novo mutations, 

sequencing studies continue to be an important approach, but the current sequencing 

cost is still very high, especially for large samples [5]. As an alternative strategy, 

advanced analytical approaches like machine learning and statistical methods, which 

leverage previously implicated genes and prior knowledge, have the potential to 

enhance risk gene discovery in an efficient and cost-effective manner [6,7,8]. 

In this study, we have proposed a machine learning-based process pipeline for ef- 

effectively identifying the candidate chromosomal locations (Hereafter will be referred 

tas genes for simplicity) in ASD. Random Forest (RF), an ensemble-based classifier, is 

trained with the gene expression data of ASD and TD from the NCBI GEO database. 

We have chosen RF, as it's a widely-used and established machine-learning algorithm 

for classifying datasets with many features. RF is an ensemble method that combines 

multiple decision trees, handling complex relationships between features and the target 

variable. It can also estimate feature importance, identifying informative genes 

for classification. The built machine learning model is validated using 5-fold cross-

validation and candidate DEGs responsible for ASD were found. 

2. Methods 

The processing pipeline adopted in this study is shown in Figure 1. The gene 

expression data were downloaded from the NCBI GEO database of GSE7329 [9]. The 

gene expression data provides information about the expression level of the 43,932 

genes of 30 samples (ASD=15 and TD=15) [10]. The gene expression data was 

Figure 1. Flowchart of the proposed pipeline 

Our study used multiple software packages including GEOquery, LIMMA and 

Tidyverse to predict disease outcomes based on gene expression data. In addition, the 

Python programming language package Sci-kit learn 1.0.1 was also used for building 

and training machine learning models to predict disease outcomes based on gene 

expression data. Initially, background correction was performed to subtract the 

background intensity from the foreground intensity for each spot. It attempts to adjust 

preprocessed using an algorithm implemented in the R programming language.  
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the data for ambient intensity surrounding each feature. We normalized the gene data

and subsequently applied empirical Bayes statistics to differential expression to rank 

genes in order of evidence for differential expression. The computed linear model fit 

was then applied to generate the moderated t-statistics, moderated F-statistic, and log-

odds of differential expression by empirical Bayes moderation of the standard errors

towards a global value. We excluded 2,686 genes from the analysis, as their 

chromosomal locations were not available in the data set. Furthermore, 2 duplicates of

15 genes and 10 duplicates of 75 genes were observed and we computed the average 

for these genes. This involved taking the sum of the expression values for each gene 

and dividing it by the number of times that gene occurred in the dataset. To remove 

these redundant and missing gene names, we sorted and filtered the data in Microsoft 

Excel 2016, which led to the exclusion of these genes. Our final analysis included a 

total gene count of 40,556. We per- formed extensive 5-fold cross-validation to

evaluate the performance of the RF machine learning model. Further, we optimized the 

number of features (Chromosomal locations) for the training model using the feature

ranking method (Top 10 Chromosomal locations) of RF. During training, the genes

were ranked according to their importance and the top 10 genes were only included in 

building the model in each fold. We computed the performance metrics like accuracy,

sensitivity, specificity, precision and F-measure to evaluate the performance of the

classification.

3. Results and Discussions

Figure 2 shows the occurrence of significant genes across 5-fold cross-validation by

RF. There are 10 most important genes per fold (50 in total), but due to the overlapping

of certain genes in the 5 folds, we ended up with 34 unique genes whose number of

occurrences add up to 50. It can be observed that ‘chr3:113322718-113322659’ (Gene

name-germinal centre expressed transcript) was the significant DEG present in every

fold. So, we conclude that this gene plays a significant role in ASD. Other genes such

as ‘chr3:197078850-197078791 and chr4:147533543147533484’ occurred in 3 out of 5

folds indicating influential contributions to the classifier. Furthermore, 8 chromosomal

locations were present in 2 folds and the rest were present in a single fold.

Figure 2. Histogram plot of the number of occurrences concerning chromosomal locations of genes in the 5-

fold cross-validation

p
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 We obtained 96.67% for the accuracy metrics and the same for the sensitivity and 

specificity metrics. Similarly, the model also achieved a high precision of 97.5% and an 

F-measure score of 96.57%. The results showed that our proposed pipeline was able to 

recognize ASD from TD with high average classification accuracy. 

Table 1 depicts the top 10 DEGs identified based on the RF model and statistical 

method. Our results show that chr3:113322718-113322659 and chrX:72826272-

72826213 were the most significant genes by RF and t-test respectively. However, the 

top 10 genes identified by the RF and t-test were dissimilar. 

Table 1. Comparison of top 10 DEGs of ASD identified through RF and t-test methods 

S.No. RF  t-test  

 Chromosomal location Score Chromosomal location p-value 

1 chr3:113322718-113322659 0.011 chrX:72826272-72826213 9.66E-33 

2 chr3:197078850-197078791 0.006 chr11:61161623-61161682 1.08E-25 

3 chr4:147533543-147533484 0.007 chr12:54797596-54797655 4.33E-25 

4 chr16:82645087-82645028 0.006 chr6:74284574-74284515 9.88E-25 

5 chr22:30158791-30158850 0.008 chr6:33351778-33351946 1.22E-24 

6 chr4:77588589-77588648 0.006 chr1:44913389-44913448 1.55E-24 

7 chr14:50170228-50170169 0.008 chr2:232403578-232403637 2.6E-24 

8 chr13:42685918-42685859 0.007 chr17:34259949-34259890 3.62E-24 

9 chr9:128932037-128932096 0.006 chr16:1952138-1952082 4.56E-24 

10 chr17:63123088-63123147 0.006 chr7:5340087-5340028 5.17E-24 

4. Limitations and Future work 

Our process pipeline has produced a high classification accuracy of 96.7% to 

discriminate between ASD and TD. However, it has a few limitations. We ranked and 

selected the top 10 genes but failed to find similar genes between RF and t-test 

analysis. We can select the top 20, 30, or 40 genes and then re-validate the results. We 

can also use other preprocessing pipelines, like low-level preprocessing or high-level 

preprocessing methods [11]. In addition, we have considered only a single gene 

expression dataset and can use more datasets for improved performance. We built the 

models using machine learning classifiers but never attempted deep learning 

algorithms. We used only RF; however, we can use other classifiers such as support 

vector machine, logistic regression, XGBoost etc. 

5. Conclusions 

We have proposed a machine learning framework for identifying the genes responsible 

for causing ASD in an individual. We achieved an accuracy of 96.67% and the top 

performing gene was the germinal center expressed transcript 2 (chromosomal location 

chr3:113322718-113322659) by the RF algorithm. However, with the statistical 

analysis, we found the chromosomal location chrX:72826272-72826213 was 

responsible for ASD. The chromosomal locations were found different in both 

approaches. However, the RF model produced high classification accuracy. Our study 

Pragya et al. / Differential Gene Expression Data Analysis of ASD Using Random Forest1050



 

shows the possibility of utilizing the proposed model in a potential application for 

screening ASD and TD in a clinical environment. 
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