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Abstract. In the context of medical concept extraction, it is critical to determine if 

clinical signs or symptoms mentioned in the text were present or absent, experienced 

by the patient or their relatives. Previous studies have focused on the NLP aspect 
but not on how to leverage this supplemental information for clinical applications. 

In this paper, we aim to use the patient similarity networks framework to aggregate 

different phenotyping modalities. NLP techniques were applied to extract 
phenotypes and predict their modalities from 5470 narrative reports of 148 patients 

with ciliopathies (a group of rare diseases). Patient similarities were computed using 

each modality separately for aggregation and clustering. We found that aggregating 
negated phenotypes improved patient similarity, but further aggregating relatives’ 

phenotypes worsened the result. We suggest that different modalities of phenotypes 

can contribute to patient similarity, but they should be aggregated carefully and with 
appropriate similarity metrics and aggregation models. 
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1. Introduction 

Medical concept extraction from clinical narratives is an important subdomain of 

biomedical natural language processing (NLP), enabling applications ranging from 

clinical decision support to care quality improvement [1]. In addition to concept 

detection, normalization and disambiguation, extraction of context information, such as 

negation and experiencer (referred to as “modalities”), is critical for determining whether 

mentioned clinical signs were present or absent, experienced by the patient or by their 
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relatives, which can have a high impact in clinical applications. Although recent efforts 

have improved modality prediction accuracy [2], little attention has been given to using 

this supplemental information in subsequent work. Previously, we used this metadata to 

keep only the patient's own present phenotypes when computing patient similarity for 

rare disease diagnosis. Recently, Slater et al. evaluated this choice in classifying primary 

diagnosis over MIMIC-III patient visits and confirmed its effectiveness [3].  

Similar clinical characteristics are believed to be indicative of similar clinical 

outcomes [4]. This study hypothesizes that negated phenotypes and family histories can 

also contribute to patient similarity, as the negation may reflect the assumptions of 

clinicians, and family history may also be useful in predicting outcomes for health 

conditions related to genetic inheritance. Therefore, rather than simply removing negated 

phenotypes and relatives’ phenotypes, we aim to aggregate different phenotyping 

modalities into similarity models. Patient similarity network (PSN) framework has been 

often considered for heterogeneous multi-omics data aggregation (such as mRNA 

expression, DNA methylation, etc.) [4], where all types of data are converted to a single 

type of input (similarity networks), integration is straightforward [5].  

In this study, we explored the feasibility of using PSNs framework to improve 

patient similarity using different phenotyping modalities, namely negated phenotypes 

and phenotypes experienced by patient’s family members. The study was conducted as 

part of the C’IL-LICO program, aiming to develop transformative diagnostic, prognostic 

and therapeutic approaches for patients suffering from ciliopathies, a group of rare 

diseases caused by ciliary dysfunction. The proposed method was evaluated in the 

context of stratifying ciliopathy patients into subgroups using deep phenotyping in their 

unstructured electronic health records (EHRs). 

2. Materials and methods 

2.1. Patient selection and ciliopathies subtypes 

The joint data warehouse of Necker Children’s Hospital and Imagine Institute, called Dr 

Warehouse, holds over 9 million documents of 800,000 patients, and structured data 

(gene, diagnosis, manually curated phenotypes) for more than 1200 patients with 

ciliopathies. This study focused on the 148 diagnosed patients at Necker Children’s 

Hospital with sufficient documents, involving 47 ciliary genes and 26 Orphanet encoded 

diagnoses. The gene-diagnosis combination created 64 classes, with 54 classes having 

less than 3 patients. We thus grouped the genes based on their function and localization 

within the cilium based on [9]. Overlapping diagnoses were also grouped. The final class 

assignment was validated by a ciliopathy expert (SS), which resulted in five classes.  

 

2.2. Clinical concept extraction and modality prediction 

For phenotype extraction, a hybrid strategy combining a dictionary-based approach and 

a deep-learning approach using bidirectional Gated Recurrent Units and Conditional 

Random Fields (biGRU-CRF) model was adopted, representing extracted mentions as 

concepts in the Human Phenotype Ontology (HPO). For modality prediction, a deep 

learning pipeline was developed using fastText and contextual Bidirectional Encoder 

Representations from Transformers (BERT)-type embeddings, combined with GRU or 
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Long Short Term Memory (LSTM) recurrent neural networks, which were shown 

outperforming the rule-based approaches in negation and subject prediction tasks [6].  

2.3. Patient similarity networks using different modalities of phenotyping 

For each phenotype modality, i.e., patient’s positive (pt_pos) and negative (pt_neg), 

family’s positive (fm_pos) and negative (fm_neg), patient similarities were computed 

using the average best match method as described in [7]. More precisely, for two patients 

represented by two sets of concepts ��and ��, the similarity from patient �� to �� is the 

weighted average of the best-match concept similarities over all concepts in ��:   
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where �� is the weight vector indicating the relevance of each phenotype to the patient. 

The symmetric similarity is ����	
���# �� � �
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Regarding the similarity between concepts, we considered the Lin’s semantic similarity 

[8], which is based on the information content (IC) of the two phenotypes and the IC of 

their lowest common subsumer (LCS) in the HPO hierarchy: 
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Four PSNs were built using the computed patient similarity matrix, with patients as 

nodes and similarities as weighted edges. The 304567589�was considered as a baseline. 

Then the other PSNs were aggregated successively by considering a weighted average 

combination of the current network and previously aggregated networks: 304:;;� �
�<304567589 ( �� = <304567>?;, 304:;;@ � A304:;;� ( �� = A304BC7589, and so on.   

2.4. Clustering and evaluation for patient stratification  

Hierarchical agglomerative clustering with complete-linkage was applied on the baseline 

PSN and on each aggregated PSN. The number of clusters was fixed to 5, which equals 

to the number of grouped gene-diagnosis classes. Rand index (RI) and adjusted RI (ARI) 

were used to measure the concordance with the ground truth class assignment. More 

precisely, D, � �� ( EFG�H, where � is the number of pairs of patients that are in the 

same gene-diagnosis class and in the same cluster, E is the number of pairs of patients 

that are in different classes and in different clusters, and G�H is the number of all possible 

pairs of patients. The ARI is the RI discounted by the expected RI of random labelings:  

ID, � JKLM�JK
C:N�JKLM�JK 2���������O)    

Therefore, the range be definition of RI and ARI are [0,1] and [-1,1], respectively.  

3. Results 

3.1. Different phenotype modalities and PSNs 

After applying the NLP techniques, we identified 2157 distinct pt_pos phenotypes 

(extracted from 5470 narrative reports from 148 ciliopathy patients), 879 distinct pt_neg 

phenotypes (3366 reports of 131 patients), 275 distinct fm_pos phenotypes (575 reports 
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of 66 patients), and 49 distinct fm_neg phenotypes (124 reports of 21 patients). Due to

the small number of patients with fm_neg phenotypes, patient similarities were computed 

only for the first three modalities, and the aggregation was limited to these three PSNs. 

Figure 1 showed the PSNs with the Fruchterman-Reingold layout. To facilitate the 

visualization, only the top 5% of the weighted edges for each node are displayed. Nodes 

were colored by the ground truth class assignment.

Figure 1. Individual and aggregated networks with a zoom on the bottom left.

3.2. Clustering performance

The RI and ARI were computed for clustering using 304567589 and each aggregated PSN, 

the results obtained with the best aggregation weights that were determined via grid 

search for each aggregation are shown in Table 1. We can observe that aggregating 

patient’s negated phenotypes improved the performance, but further aggregating

family’s phenotypes worsened the result. In order to better understand the performance

improvement using 304:;;� , we applied the same clustering method with the same 

similarity model to manually curated phenotypes in the structured research data. In 

contrast to the automated phenotype extraction from narrative reports, manually curated 

phenotypes are comprehensive, precise and relevant, thus can be considered as the best 

phenotypic representation of patient. The RI and ARI using the manually curated 

phenotypes was 0.784 and 0.514, respectively, which are not close to 1, due to the 

phenotypic and genetic heterogeneity and overlap of ciliopathies. Given these values as 

references, the relative increase in RI and ARI towards the references is 43% and 66%, 

respectively, showing an important improvement. An expert (SS) reviewed the 

discrepancies of the clustering results obtained from 304567589 and 304:;;� , and 

confirmed the improvement by aggregating patient similarity on negated phenotypes.

For example, a better stratification of isolate and syndromic Leber congenital amaurosis 

(LCA) caused by different genes was achieved using 304:;;�. 

Table 1. Clustering performance for the baseline PSN (pt_pos), aggregated PSNs, and the PSN using manual 

curated phenotypes

Baseline
pt_pos 

Agg2
+pt_neg

Agg3
+pt_neg+fm_pos

Reference
manually curated phenotypes

Rand index 0.735 0.756 0.721 0.784

adj. Rand index 0.393 0.473 0.349 0.514
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4. Discussion 

Gliozzo et al. [4] distinguished three aggregation approaches in the recent review: input 

data-fusion, PSN-fusion, and output-fusion. Input data-fusion is unsuitable for negations 

and family histories, since the same phenotype can be present and absent for the same 

patient at different times, and for the patient and also for the relatives. Output-fusion is 

also not possible, since data in some modalities can be too sparse for a reliable prediction. 

Therefore, an intermediate integration was considered to compute patient similarities 

using each modality independently, then aggregating them successively. While the lack 

of ground truth makes evaluating clustering performance challenging, expert grouped 

gene-diagnosis classes were established, and RI and ARI using manually curated 

phenotypes were provided as a reference. Our results showed significant improvement 

of ARI when aggregating negated phenotypes, but worse performance with family’s 

phenotypes. We think that is because most of the ciliopathies in our dataset are recessive 

disorders, and the subject prediction can only distinguish whether the experiencer is the 

patient or not, without further precision (parents, siblings, or other family members).  

Our study has some limitations, which will be addressed in future work. As the first 

attempt of aggregating different phenotyping modalities into patient similarity, we used 

the same similarity metric for negated phenotypes as for positive phenotypes, and a 

simple aggregation model, i.e., a weighted sum of individual similarities obtained on 

each modality. The evaluation was conducted on a small dataset. The next step will be 

to explore other similarity metrics that may suit better negation and family history, 

investigate more sophisticated aggregation models, and perform a broader evaluation 

involving also dominant disorders to assess the impact of family history.  

This work was supported by State funding from The French National Research 

Agency (ANR) under “Investissements d’Avenir” programs (ANR-10-IAHU-01) and 

C’IL-LICO project (ANR-17-RHUS-0002). 

References 

[1] Fu S, Chen D, He H, Liu S, Moon S, Peterson KJ, Shen F, Wang L, Wang Y, Wen A, Zhao Y, Sohn S, 
Liu H. Clinical concept extraction: A methodology review. J Biomed Inform 2020 Sep;109:103526. 

PMID:32768446 
[2] Slater LT, Bradlow W, Motti DF, Hoehndorf R, Ball S, Gkoutos GV. A fast, accurate, and generalisable 

heuristic-based negation detection algorithm for clinical text. Comput Biol Med 2021 Mar;130:104216. 

PMID:33484944 
[3] Slater LT, Karwath A, Hoehndorf R, Gkoutos GV. Effects of Negation and Uncertainty Stratification 

on Text-Derived Patient Profile Similarity. Front Digit Health 2021 Dec 6;3:781227.  
[4] Gliozzo J, Mesiti M, Notaro M, Petrini A, Patak A, Puertas-Gallardo A, Paccanaro A, Valentini G, 

Casiraghi E. Heterogeneous data integration methods for patient similarity networks. Brief Bioinform 

2022 Jul 18;23(4):bbac207. PMID:35679533 
[5] Pai S, Hui S, Isserlin R, Shah MA, Kaka H, Bader GD. netDx: interpretable patient classification using 

integrated patient similarity networks. Mol Syst Biol 2019 Mar 14;15(3):e8497. PMID:30872331 
[6] Vincent M, Douillet M, Lerner I, Neuraz A, Burgun A, Garcelon N. Using Deep Learning to Improve 

Phenotyping from Clinical Reports. Stud Health Technol Inform 2022 Jun 6;290:282–286.  
[7] Chen X, Faviez C, Vincent M, Garcelon N, Saunier S, Burgun A. Identification of Similar Patients 

Through Medical Concept Embedding from Electronic Health Records: A Feasibility Study for Rare 

Disease Diagnosis. Stud Health Technol Inform 2021 May 27;281:600–604. PMID:34042646 
[8] Lin D. An Information-Theoretic Definition of Similarity. Proc Fifteenth Int Conf Mach Learn San 

Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 1998. p. 296–304. 
[9] Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol 

2017 Sep;18(9):533–547. PMID:28698599 

X. Chen et al. / Improving Patient Similarity Using Different Modalities of Phenotypes 1041


