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Abstract. Deep learning models for radiology are typically deployed either through 

cloud-based platforms, through on-premises infrastructures, or though heavyweight 

viewers. This tends to restrict the audience of deep learning models to radiologists 
working in state-of-the-art hospitals, which raises concerns about the 

democratization of deep learning for medical imaging, most notably in the context 

of research and education. We show that complex deep learning models can be 
applied directly inside Web browsers, without resorting to any external computation 

infrastructure, and we release our code as free and open-source software. This opens 

the path to the use of teleradiology solutions as an effective way to distribute, teach, 
and evaluate deep learning architectures. 
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1. Introduction 

Deep learning applied to radiology has attracted a lot of interest in the recent years [1]. 

Convolutional neural networks (CNN) have proved to be an extremely promising 

building block for the tasks of classification, segmentation, localization, and detection 

applied to medical images [2]. In particular, the U-Net architecture is considered as a 

state-of-the art CNN for 2D biomedical image segmentation [3], with extensions to dense 

3D segmentation [4]. However, the deployment of successful deep learning models in 

clinical setups involves multiple challenges that are notably related to the software 

distribution of the models, to the security of clinical data, and to the certification and 

reimbursement of associated clinical decision support systems. 

Nowadays, the most encountered type of deployment for deep learning models is 

cloud-based. In this approach, hospitals internally setup a gateway that implements on-

demand auto-routing of DICOM images from their PACS (Picture Archiving and 

Communication System) to a proprietary cloud platform managed by the vendor. After 

the analysis of the images, the cloud platform typically sends back a DICOM series that 

contains a PDF report, possibly associated with structured reports or annotated secondary 

capture images, which can be reintegrated into the PACS. The DICOM gateway is often 

implemented on the top of the DICOMweb protocol over HTTPS communications to 

protect the confidentiality of patient data. Despite its popularity, this approach can be 

 

1 Corresponding Author: Sébastien Jodogne Computer Science and Engineering Department (INGI), 

Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), 

Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium, E-mail: 

sebastien.jodogne@uclouvain.be. 

Caring is Sharing – Exploiting the Value in Data for Health and Innovation
M. Hägglund et al. (Eds.)
© 2023 European Federation for Medical Informatics (EFMI) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI230325

997

https://orcid.org/0000-0001-6685-7398


slow because of the time that is necessary to transmit the hundreds of megabytes of a 

single DICOM study over Internet, and the delay for getting the results of the analysis 

can largely vary depending upon the workload of the cloud infrastructure, which might 

be problematic depending on the clinical application. Furthermore, using cloud platforms 

implies a centralization of imaging studies, which necessitates complex legal agreements 

with the hospital, and a careful de-identification to avoid leaks of personal data [5]. 

Finally, as the usage of deep learning increases, hospitals want to take advantage of 

multiple deep learning algorithms, which causes scalability issues that could be mitigated 

through the deployment of shared gateways communicating with multiple vendors. 

An alternative to cloud-based platforms consists in deploying the deep learning 

models as central, on-premises software running directly inside the computing 

infrastructure of the hospital. This approach has the major advantage of restraining the 

network exchanges to the intranet of the hospital, which guarantees higher network 

bandwidth, reserved computational power, and security by design in the handling of 

patient data. On-premises deep learning algorithms can be distributed in two distinct 

ways: either directly integrated within the PACS, or maintained as a separate solution by 

a third-party vendor. The former distribution method ensures a single point of contact 

for the hospital, but is not proposed by all the PACS vendors, and provides a restricted 

portfolio of algorithms selected by the vendor. The latter method opens a larger choice 

of algorithms, but requires more complex and costly integrations, as each third-party 

vendor must install and maintain its own dedicated computing infrastructure inside the 

hospital. 

A third possibility consists in shipping the deep learning models together with the 

heavyweight viewers installed on imaging workstations, making local computational 

resources profitable. This avoids the installation of the dedicated computer clusters, 

which contrasts with on-premises infrastructures, while keeping the DICOM instances 

inside the intranet. This solution, however, vastly complicates the deployment of the 

algorithms, as it requires the local team of system administrators to keep the software 

and the models continuously up-to-date on the target computers. Furthermore, for 

security reasons, it should stay limited to fixed workstations that are directly connected 

to the PACS through DICOM query/retrieve, which is typically not the case with 

physicians’ laptops. This type of deployment is also still dependent on the portfolio of 

deep learning models that are provided by the vendors of heavyweight viewers. 

Besides their complexity and cost, the three types of deployments described above 

are inherently aimed at radiologists working inside state-of-the-art hospitals. This raises 

concerns about the need of democratizing deep learning models by sharing the technical 

knowledge behind such algorithms to a more general audience. Indeed, despite a general 

call to use deep learning, few skilled workers have the opportunity to experiment with 

machine learning algorithms during their training or as a part of their continuing 

education. Such technologies are also hardly affordable for emerging economies. 

Furthermore, even if there exists free and open-source software for medical imaging with 

advanced deep learning features [6], physicians, or more generally healthcare 

professionals, expect simple, user-friendly interfaces that are entirely focused on the 

application of models. It also remains challenging to evaluate the relevance of deep 

learning models for healthcare, because of the gap between research software and clinical 

environments. According to this discussion, this paper introduces a free and open-source 

teleradiology solution that can be used to distribute, then apply deep learning models 

directly inside Web browsers, without the need of deploying a dedicated computation 

infrastructure. 
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2. Methods 

Deep learning is inherently asymmetrical: The training of models requires much data and 

computational power, notably provided by graphics processing units (GPU), whereas 

their application is within the reach of any modern computer. This allows to envision the 

application of deep learning architectures by Web browsers, if care is taken to optimize 

the operations on tensors wrt. a straight JavaScript implementation. 

To this end, we propose to rely on WebAssembly, which is an emerging Web 

technology that has been designed for situations in which complex computations must 

be carried on by a Web browser. WebAssembly is an open standard specified by W3C 

that defines a portable binary code (bytecode) to create high-performance Web 

applications. Thanks to the Emscripten compiler, C++ source code can be converted to 

WebAssembly bytecode, which is then executed at almost native speed, i.e., faster than 

JavaScript, by a stack virtual machine running inside the Web browser. WebAssembly 

is actively backed by the industry and is nowadays supported by all the major Web 

browsers. It has recently been demonstrated that WebAssembly can be used to develop 

a cross-platform C++ library for the rendering of DICOM images that is compatible with 

desktop applications, mobile applications, as well as Web applications [7]. This novel 

library has been used to design the so-called “Stone Web viewer” as the first free and 

open-source implementation of a teleradiology solution leveraging WebAssembly. 

The technical contribution of this paper consists in demonstrating that 2D U-Net 

models can be entirely applied within a teleradiology environment, in this case the Stone 

Web viewer. For this proof-of-concept, we have trained a sample U-Net model to 

segment the lungs on 2D images of a CT-scanner, using the images of the “Lung CT 
Segmentation Challenge 2017” (LCTSC) dataset [8]. This dataset contains DICOM CT-

scan images together with the delineation of both lungs encoded as DICOM RT-

STRUCT instances. The resulting U-Net model contains 7,759,521 floating-point 

parameters and was trained using the TensorFlow library [9] to minimize a smoothed 

version of the Dice loss function. The training process took 7 hours on a standard desktop 

computer (Intel Core i7-9700 CPU equipped with a NVIDIA GeForce GTX 1650 GPU). 

The resulting Dice score was 95%, which indicates average performance. 

In order to run the segmentation process inside the Web browser, we have 

implemented a highly portable library written in plain C++ to apply CNN models. This 

library is fully compatible with WebAssembly (it is consequently single-threaded) and 

provides a reference implementation for all the distinct types of layers that are 

encountered in the U-Net architecture. Figure 1 explains the pipeline by which the 

models learned by TensorFlow are brought to the Stone Web viewer. 

Figure 1. The pipeline used in this work. The U-Net model is first learned in Python using TensorFlow. A 

conversion script written in Python uses the TensorFlow API to explore the parameters and weights of the 
various layers in the trained model, then to serialize this information as a binary file using the Google’s 

Protocol Buffers (Protobuf) cross-platform library. This preprocessing is done once and offline. Whenever 

the Stone Web viewer (that is executed by the Web browser) must apply the model to some image, it asks a 
HTML5 Web worker to load the model from the Protobuf file, to carry on the computations, then to generate 

an overlay from the result of the segmentation. This Web worker can be thought of as a “thread” that is 

executed in the background by the Web browser alongside the main user interface of the Stone Web viewer. 
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3. Results 

The results of our work are depicted in Figure 2. As can be seen, we are able to segment 

CT-scan slices using our U-Net model, entirely inside the Web browser. The 

computation time is 11.3 seconds on a standard laptop computer equipped with an Intel 

i7-1165G7 CPU running Mozilla Firefox 109.0. Importantly, this computation only uses 

the CPU, so it is not required for the client computer to have dedicated local GPU 

hardware. Our C++ library for CNN uses the well-known “img2col” trick that rewrites 

convolutions as matrix products, hereby improving data locality [10]. If the direct 

“schoolbook” implementation of convolutional layers is used instead, the execution time 

slows down at 13.6 seconds. Our library also features a custom implementation of matrix 

product that leverages the optimized WebAssembly SIMD (“single instruction, multiple 

data”), since this set of instructions is currently not supported by standard C/C++ libraries 

for linear algebra. By comparison, executing the same code natively on the same laptop 

takes 5.4 seconds: This halving of the execution time is due to the fact that 

WebAssembly’s SIMD instructions work on a width of 128 bits, whereas native AVX2 

SIMD instructions work on a width of 256 bits. 

Figure 2. Segmentation using 2D U-Net models in the Stone Web viewer, applied to two test slices. The user 

launches the segmentation by clicking on the “Apply deep learning” button at the bottom of the Web 
interface. Then, a green progress bar below the button provides feedback about the computation by the Web 

worker. The segmentation mask is finally rendered as a red, semi-transparent overlay on the top of the slice. 

4. Discussion 

These results are promising and call for further work. For instance, this paper only 

considers the task of 2D segmentation using the U-Net architecture, but our library for 

deep learning in WebAssembly can be generalized to other tasks, such as classification, 

detection, or 3D segmentation. Further optimization of the CNN library is possible, by 

considering the specificity of the memory management of WebAssembly, by 

implementing more advanced techniques to compute convolutions [11], and by using 

WebGL to delegate parts of the computations to the GPU. Also, our CNN library could 

perfectly be embedded inside heavyweight viewers since it is written in plain C++. 

Importantly, all the computations are done within the Web browser, so the DICOM 

instances never leave the PACS/viewer environment, making this deep learning solution 
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secure-by-design. This is notably a key advantage in the context of GDPR compliance 

that is implied by the MDR regulation. Furthermore, as the Stone Web viewer downloads 

its images using the DICOMweb standard, it is compatible with any modern PACS. Our 

work is released as free and open-source software in branch 3.0 of the Stone Web viewer. 

Interesting further research includes publishing a library of open-access models that 

could be used by our system, applying the system to selected clinical tasks, and 

evaluating the system for the training of skilled workers. 

5. Conclusions 

This paper demonstrates the feasibility of efficiently applying deep learning models 

client-side, directly by Web browsers, through a user-friendly teleradiology interface. 

This contribution allows to envision a scalable deployment of deep learning models, in 

the sense that these models could be immediately made available to many standard 

computers without installing any dedicated computation infrastructure or heavyweight 

software. It has also been shown that thanks to the WebAssembly SIMD, complex deep 

learning architectures such as U-Net with millions of parameters can be processed by a 

standard client computer in about ten seconds. This work is released as free and open-

source software, in the hope that it will foster the evaluation artificial intelligence 

algorithms in clinical setups, and that it will promote the education of physicians, nurses, 

yet general audience, to artificial intelligence applied to medical imaging. 
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