
The Assessment of Glioblastoma Metabolic 

Activity via 11C-Methionine PET and 

Radiomics 

Gleb DANILOVa,1, Diana KALAEVAb, Nina VIKHROVAb, Tatiana KONAKOVAb, 

Anna ZAGORODNOVAa, Angelina POPOVAa, Andrey POSTNOVb,  

Svetlana SHUGAYb, Michael SHIFRINa and Igor PRONINb 
a

 Laboratory of Biomedical Informatics and Artificial Intelligence, National Medical 
Research Center for Neurosurgery named after N.N. Burdenko, Moscow, Russian 

Federation  
bNeuroimaging Department, National Medical Research Center for Neurosurgery 

named after N.N. Burdenko, Moscow, Russian Federation 
c

 National Research Nuclear University MEPhI, Moscow, Russian Federation 
d Lebedev Physical Institute of the Russiaт Academy of Science, Moscow, Russian 

Federation 
eJSC Research Institute of Technical Physics and Automation, Moscow, Russian 

Federation 
ORCiD ID: Gleb Danilov https://orcid.org/0000-0003-1442-5993 

Abstract. Nowadays, the quantitative analysis of PET/CT data in patients with 

glioblastoma is not strictly standardized in the clinic and does not exclude the human 
factor. This study aimed to evaluate the relationship between the radiomic features 

of glioblastoma 11C-methionine PET images and the tumor-to-normal brain (T/N)  

ratio determined by radiologists in clinical routine. PET/CT data were obtained for 
40 patients (mean age 55 ± 12 years; 77.5% men) with a histologically confirmed 

diagnosis of glioblastoma. Radiomic features were calculated for the whole brain 

and tumor-containing regions of interest using the RIA package for R. We 
redesigned the original RIA functions for GLCM and GLRLM calculation to reduce 

computation time significantly. Machine learning over radiomic features was 

applied to predict T/N with the best median correlation between the true and 
predicted values of 0.73 (p = 0.01). The present study showed a reproducible linear 

relationship between 11C-methionine PET radiomic features and a T/N indicator 

routinely assessed in brain tumors. Radiomics enabled utilizing texture properties of 
PET/CT neuroimaging that may reflect the biological activity of glioblastoma and 

can potentially augment the radiological assessment. 
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1. Introduction 

Glioblastoma is the most common primary malignant astrocytic neoplasm of the brain 

[1]. A valuable neuroimaging modality in glioblastoma diagnostics is PET/CT with 

radiopharmaceutical. The intensity of its uptake in a tumor relative to a normal brain 

(tumor-to-normal brain ratio, T/N) correlates with the biological aggression of the 

neoplasm. To date, the quantitative analysis of PET/CT data in patients with 

glioblastoma is not strictly standardized in the clinic and does not exclude the human 

factor. Radiomics can promote unification and increase the objectivity and 

informativeness of neuroimaging assessment [2]. This study aimed to evaluate the 

relationship between the radiomic features of glioblastoma 11C-methionine PET images 

and the T/N ratio determined by radiologists in clinical routine. We believe the proposed 

approach facilitates the standardization and automation of radiological biomarkers 

production in clinical practice. 

2. Methods 

Our observational study was conducted under the ethical principles in the Helsinki 

Declaration of the World Medical Association (1964). We obtained PET images from 

adult patients with supratentorial glioblastoma treated at the National Medical Research 

Center for Neurosurgery named after N.N. Burdenko between 2018 and 2020. To assess 

the relative metabolic activity of 11C-methionine in glioblastoma by PET as a clinical 

routine, the average values of the standardized uptake value (SUV) were calculated in 

1.0 cm3 of the most active tumor region (SUVt) and 1.0 cm3 of normal brain tissue of the 

contralateral frontal lobe (SUVn). Then the tumor-to-brain ratio was derived as T/N = 

SUVt/SUVn. 

To calculate the radiomic features, MRI and PET/CT were co-registered using the 

PMOD software (v 4.0). Voxel values outside of the head contours were eliminated. A 

fixed-size rectangular area of interest was set for all the co-registered slices to capture 

the maximum tumor volume on any level. Thus, in a 3D space, the entire tumor was 

enclosed in a parallelepiped. Then, for each patient, the whole 3D array of PET voxels 

(“whole brain” dataset, WBD) and a subset of the 3D array of PET voxels in a given 

parallelepiped (“cropped brain” dataset, CBD) were exported to separate NIfTI files, 

which were used to compute radiomic features. 

Calculations and data analysis were performed using the R programming language 

(version 4.2.2) in the RStudio Server IDE (version 2022.07.0+548) on an NVIDIA DGX 

A100 supercomputer. Radiomic features were computed from PET 3D array using the 

RIA library [3]. The voxel values from CBD were discretized into 2, 4, 8, 16, 32, 64, and 

128 bins. WBD was discretized only into 128 levels to reduce the time and computation 

burden. We calculated first-order, gray level co-occurrence matrix (GLCM), gray level 

run length matrix (GLRLM) and geometry-based statistics (the complete list of features 

is presented in [4]).  To compute PET radiomic features for the entire 3D brain image, 

we redesigned the original functions from the RIA package that calculate GLCM and 

GLRLM. That accelerated the computations a thousandfold and enabled the whole brain 

radiomics with a reasonable amount of time. 

At the first step of data analysis, we selected radiomic features showing statistically 

significant Pearson correlation with the T/N ratio (p < 0.05). Then the linear regression 

models with LASSO regularization were trained over selected radiomics features as 
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predictors and T/N ratio as the target variable using glmnet library. The predictors were 

normalized, and the target variable was transformed using the decimal logarithm. 

Machine learning was repeated in 300 tests. The training and test samples were randomly 

split in each trial as 70% and 30% of the original dataset. The mean absolute error (MAE), 

root mean squared error (RMSE), and Pearson and Spearman correlation coefficients 

between the true and predicted T/N values were calculated in each test to evaluate 

prediction quality. The results from all tests were summarized to produce more robust 

estimates. 

3. Results 

A total of 40 independent preoperative PET/CT studies from 40 patients (31 (77.5%) 

men and 9 (22.5%) women, avg. age 55 ± 12 years) were included. The median T/N ratio 

obtained by neuroradiologists for PET studies was 3.26 [2.74; 4.17], and the minimum 

and maximum values were 1.94 and 5.03. MAE, RMSE, and the number of predictors 

(NoP) in models summarized from 300 tests as median [25% quantile; 75% quantile] and 

calculated exclusively on test samples, as well as the minimum (Min NoP) and the 

maximum (Max NoP) number of predictors, are presented in Table 1. The numbers in 

dataset names (“2_4..._128” or “_128”) denote all discretization levels for images from 

which the radiomics parameters included in the dataset were calculated. 

 

Table 1. The quality metrics of linear regression models summarized from 300 tests for various sets of radiomic 

features. 

Dataset MAE RMSE NoP Min 
NoP 

Max 
NoP 

WBD_128_CBD_128 0.49 [0.41;0.58] 0.68 [0.54;0.85] 14 [11;16] 4 32 

WBD_128_CBD_2_4_8_16_

32_64_128 
0.52 [0.45;0.63] 0.75 [0.62;0.91] 17 [14;20] 2 37 

CBD_128 0.54 [0.46;0.64] 0.76 [0.63;0.94] 9 [7;12] 1 27 

CBD_2_4_8_16_32_64_128 0.56 [0.47;0.67] 0.61 [0.45;0.74] 11 [9;15] 1 28 

WBD_128 0.72 [0.63;0.81] 0.90 [0.79;1.02] 9 [6;12] 0 23 

Table 2 shows the correlation between the predicted and true T/N ratio for linear 

regression models with regularization and its statistical significance calculated on test 

samples and presented as median [25% quantile; 75% quantile]. The rows in Tables 1 

and 2 range from best (top) to worst (bottom) performance. 

Table 2. Correlation between the predicted and true T/N ratios. 

Dataset Correlation Coefficient P-value 

WBD_128_&_CBD_128 Pearson 0.71 [0.55;0.82] 0.01 [0.00;0.06] 

WBD_128_&_CBD_128 Spearman 0.73 [0.55;0.81] 0.01 [0.00;0.07] 

WBD_128_&_CBD_2_4_8_16_32_64_128 Pearson 0.67 [0.53;0.77] 0.02 [0.00;0.08] 

WBD_128_&_CBD_2_4_8_16_32_64_128 Spearman 0.67 [0.51;0.80] 0.02 [0.00;0.09] 

CBD_128 Pearson 0.64 [0.45;0.80] 0.03 [0.00;0.14] 

CBD_128 Spearman 0.67 [0.48;0.80] 0.02 [0.00;0.12] 

CBD_2_4_8_16_32_64_128 Pearson 0.61 [0.45;0.74] 0.03 [0.01;0.14] 
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CBD_2_4_8_16_32_64_128 Spearman 0.62 [0.47;0.78] 0.04 [0.00;0.12] 

WBD_128 Pearson 0.36 [0.20;0.53] 0.24 [0.08;0.49] 

WBD_128 Spearman 0.42 [0.28;0.56] 0.17 [0.06;0.38] 

Figures 1A and 1C show the regression lines between true and predicted T/N ratios 

superimposed for 300 tests over WBD_128_CBD_128 dataset (best performance) and 

WBD_128 dataset (worst performance), respectively. Similarly, figures 1B and 1D 

present the locally weighted scatterplot smoothing (LOESS) lines for all the tests to 

catch the most common trends. 

 

 

Figure 1. The scatterplot of predicted vs. true T/N ratios from 300 tests. A – superimposed regression lines, 
WBD_128_CBD_128 dataset; B – LOESS line, WBD_128_CBD_128 dataset; C – superimposed regression 

lines, WBD_128 dataset; B – LOESS line, WBD_128 dataset; 

4. Discussion 

The present study showed a reproducible linear relationship between 11C-methionine 

PET radiomic features and a T/N indicator routinely assessed for brain tumors. In other 

words, we demonstrated the fundamental capability of calculating radiomics-based 

complex PET biomarkers that could be clinically relevant, e.g. as predictors of tumor 

proliferative activity. It is essential that these regularities were found for glioblastoma 

PET images - within one top-malignant histological tumor type. However, these effects 

should be tested within a comprehensive histological range.  

The impact of whole brain radiomics is well-noted in Tables 1 and 2 and Figures 1. 

The WBD alone is less effective compared to sole CBD in predicting T/N. The 

combination of radiomic features from a set of cropped images with different 

discretization levels is slightly inferior to CBD with one top-discretization level. 

However, combining radiomic features from the entire brain and its tumor-containing 

area provided the best value. That strikes the importance of selecting the regions of 
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interest for radiomics (not limited to the visible tumor) and the possible effect of 

discretization, which should be further tested. 

A common radiomics application in glioblastoma imaging studies is the differential 

diagnosis, overall survival prognosis, and molecular biomarkers prediction [5]. However, 

radiomics was rarely used to study PET/CT glioblastoma images [6]. The potential 

clinical significance of radiological PET biomarkers was previously shown in survival 

research for patients with glioblastoma [7]. The application of radiomics to 11C-

methionine PET is extremely rare. To the best of our knowledge, this is the first study to 

combine local and whole-brain radiomics to predict tumor metabolic activity by PET/CT 

with 11C-methionine. 

The main limitations of our study are the small sample size and the lack of standards 

for identifying the local region of interest in capturing the tumor. Our future work will 

address more radiomic features evaluation on larger samples. 

Conclusion  

Radiomics enables utilizing texture properties of PET/CT neuroimaging that may reflect 

the biological activity of glioblastoma and can potentially augment the radiological 

assessment. Despite the current limitations in the application, the first results indicate the 

promising potential of neuroradiomics. The regularities found in this research should be 

tested with a larger amount of data. 

The study was supported by the Ministry of Science and Higher Education of the Russian 
Federation under agreement No. 075-15-2021-1343. 
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