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Abstract. Many concepts in the medical literature are named after persons. Frequent 
ambiguities and spelling varieties, however, complicate the automatic recognition 

of such eponyms with natural language processing (NLP) tools. Recently developed 

methods include word vectors and transformer models that incorporate context 
information into the downstream layers of a neural network architecture. To evaluate 

these models for classifying medical eponymy, we label eponyms and 
counterexamples mentioned in a convenience sample of 1,079 Pubmed abstracts, 

and fit logistic regression models to the vectors from the first (vocabulary) and last 

(contextualized) layers of a SciBERT language model. According to the area under 
sensitivity-specificity curves, models based on contextualized vectors achieved a 

median performance of 98.0% in held-out phrases. This outperformed models based 

on vocabulary vectors (95.7%) by a median of 2.3 percentage points. When 
processing unlabeled inputs, such classifiers appeared to generalize to eponyms that 

did not appear among any annotations. These findings attest to the effectiveness of 

developing domain-specific NLP functions based on pre-trained language models, 
and underline the utility of context information for classifying potential eponyms. 
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1. Introduction 

Concepts that are named after persons are a frequent characteristic of medical 

terminology and its textual manifestations. Such eponyms may refer to a variety of 

notions such as diseases, diagnostic signs, therapeutic interventions, or anatomical parts. 

While most medical eponyms are named after pioneering researchers (such as Alzheimer 
disease), some also originate from affected patients (Lou Gehrig disease) or from 

historical or mythological characters (ceasarean section). Eponyms typically resonate 

with scientific achievement, although their use has also been criticized for 

misrepresenting academic merit as well as for lacking conceptual accuracy [1]. 

While existing clinical and scientific texts continue to feature numerous eponyms, 

however, methods from computational linguistics or natural language processing (NLP) 

will likely encounter these peculiar phenomena. In contrast to other parts of medical 

terminology, eponyms are not assembled from semantic elements that provide clues to 

their medical meaning. Human readers who are not acquainted with a particular condition 

such as Addison disease cannot infer the involved pathophysiology from the eponym; its 

composed synonym primary adrenal insufficiency, on the other hand, is more descriptive 

in this regard. 
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Other properties like misspellings (Fischer's exact test) complicate the automatic 

detection and analysis of eponyms in conventional biomedical texts. Many clinical terms 

are named after several persons (Stevens-Johnson syndrome), while a few eminent 

researchers such as Harvey Cushing managed to spawn several concepts. Some terms 

can occur as eponyms or as non-eponyms, as in a fractionated dosage of 50 gray in 

contrast to gray matter volume. Near-homonyms such as Wegner and Wegener can be 

misused in patient records, which has motivated the development of preventative clinical 

decision support functions [2]. The international origin of many medical eponyms can 

introduce characters that are unconventional in standard English, and inconsistent 

Anglicization may entail variants such as Bekhterev and Bechterew. Gradual absorption 

into parlance may involve a loss of capitalization, as well as inflections and compositions 

such as fallopian tube and rickettsiosis.  

Previous research has attempted to systematically collect medical eponyms, for 

example in order to trace their usage, including by automatically expanding search 

queries with variations from a curated eponym list [3]. Recent applications of advanced 

NLP approaches have increasingly affected knowledge synthesis from the scientific 

literature [4]. Such modern NLP methods include word vectors and transformer models 

that harness high-dimensional numeric representations derived from co-occurrence 

patterns trained in large textual corpora. This research studies the utility of word vectors 

and transformer models for recognizing medical eponymy by training and evaluating 

classifiers in excerpts from the medical literature. 

2. Methods 

Recent language models represent textual subsequences (tokens) as high-dimensional 

numeric vectors, or word embeddings. First-layer vocabulary vectors are thereby 

consistently mapped to the same locations in vector space, regardless of context. 

Transformer models also use positional encoding and a so-called attention mechanism to 

incorporate weighted information from surrounding tokens into the downstream vectors 

of a multilayer neural network. While vocabulary vectors of homonyms as in Down-
regulated gene functions and adults with Down syndrome do not depend on preceding or 

subsequent tokens, contextual information embedded in the hidden layers of a 

transformer model thus promises to potentially improve the discrimination of ambiguous 

eponyms.  

The following evaluation considers eponymy classifiers based on a domain-specific 

language model in a convenience sample of abstracts downloaded from Pubmed. 

Annotations were defined as either eponyms or non-eponyms using the Brat Rapid 
Annotation Tool [5]. Figure 1 illustrates the annotation procedure as well as the described 

context-dependent disaggregation of hidden-layer vectors. To improve the efficiency of 

the annotation process, abstracts were processed in five batches, and candidate labels 

were automatically pre-annotated with increasingly refined classifier versions. All 

computed candidate pre-annotations were then manually reviewed and labeled as either 

eponyms or non-eponyms. Initial pre-annotations were based on the cosine similarity 

between candidate phrases and average vocabulary vectors from an initial set of eponyms, 

specified as a plain list of names. Meaningful spatial relations between vocabulary 

vectors imply that even such a simple approach may potentially generalize to other 

eponyms beyond the seeded list. 
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Subsequent batches were pre-annotated by fitting a logistic regression model to 

contextualized vectors from the last hidden layer of the SciBERT language model, using 

the scivocab_uncased configuration; SciBERT has been pre-trained in a domain-specific 

corpus, and uses vectors with 768 dimensions [6]. Previous research suggests that models 

trained in a pertinent biomedical corpus may lead to better performance in domain-

specific downstream tasks [7], including the disambiguation of homonyms [8]. Since the 

SciBERT tokenizer yields a sub-word granularity that disaggregates many eponyms (as 

in kl#ats#kin), word-related vectors were computed by averaging token vectors. Eponym 

annotations included entire compositions such as Salmonella when forming single words, 

while noun phrases such as Spearman correlation were labelled discriminately. Since 

the attention mechanism is limited to sequences with a maximum of 512 tokens, 

processing verbose abstracts required that inputs were first separated into a set of chunks, 

and that outputs were later re-aggregated.  

The refined classifier, which potentially discriminates homonyms based on their 

contexts, was also applied for a plausibility check whereby annotations that appeared to 

conflict with in-sample predictions were manually revised. The subsequent performance 

evaluation considered aggregated annotations from all batches as units of observations, 

and calculated the area under sensitivity-specificity curves in held-out partitions of 100 

bootstrapping subsamples. Scripts for computing SciBERT vectors were implemented in 

Python 3.8, and invoked the language model via the transformers package from 

huggingface.co [9]; regression models were trained via the glm() function that ships with 

of R 3.6. The author, who is trained as a physician, defined and revised all labels. 

Annotations are available at https://github.com/dtoddenroth/medicaleponyms/. 

Figure 1. Screenshot of the brat tool during annotation. Candidate sequences are labeled as either eponyms 

or non-eponyms (left). Visualization of a principal component analysis (PCA) of hidden-layer vectors for 
exemplary eponyms and counterexamples. While this image shows only some of the information contained 

in all dimensions, we see moderate label disaggregation. Note that some eponyms appear repeated in 

different locations, which could allow the context-dependent disambiguation of homonyms (right). 
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3. Results 

The described annotation procedure labelled 1,582 of 13,659 annotations in 1,079 

Pubmed abstracts as eponyms (11.6%), which amounts to an average of 1.47 eponyms 

and 12.7 annotations per abstract. Annotated eponyms included 341 different words, 

while the three most frequent ones were Fabry (227x), Alzheimer (148x), and Parkinson 

(81x).  

Figure 2 summarizes essential observations from the evaluation of the transformer-

based eponymy models. In 100 bootstrap repetitions, logistic regression models trained 

on first-layer (vocabulary) vectors achieved a median area under the sensitivity-

specificity curve of 95.7% (interquartile range 95.4% - 96.1%). Comparable models 

trained on contextualized vectors from the last hidden layer achieved a median area of 

98.0% (97.7% - 98.2%), thus outperforming first-layer models by a median of 2.3 

percentage points. 

Figure 2. Distribution of the observed performance of eponymy models trained on vocabulary vectors and on 
contextualized hidden-layer vectors, each computed from 100 bootstrap subsamples. Note that shown y-axis 

is restricted to areas under sensitivity-specificity curves between 90% and 100%. 

During the described batch-wise annotation procedure it also became apparent that 

intermediate classifier versions successfully generalized to reasonable pre-annotations 

that did not appear among the previous labels, including Bland, Altman, Hounsfield, and 

Kalman. These anecdotal observations also underline the general capability of the 

approach. 
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4. Discussion 

The observed performance of the evaluated eponymy classifiers attests to the 

effectiveness of fitting 'minimal task-specific neural architectures' to contextualized 

embeddings [6]. Such eponymy classifiers may be applied to automatically expand 

previous analyses of their use in literature over time [3]. Note that currently only some 

eponyms are represented in Medical Subject Headings (MeSH), which in Pubmed are 

assigned to indexed publications. If a more comprehensive set of eponyms such as 

Bosworth fracture could be systematically mapped to explanations like distal fibula 
fracture with posterior dislocation of the proximal fragment, this collection of 

translations might become useful for improving the reach or precision of pertinent 

queries to medical literature databases.  

As a limitation, the evaluated classifier was restricted to deciding whether a given 

token sequence constitutes an eponym, and cannot yet properly delimit multi-word 

entities such as Bland-Altman. The superior recognition observed with the contextualized 

vectors, however, indicates the potential utility of incorporating information from 

phrases around candidate eponyms, and could also be instrumental for detecting the 

spans of multi-word eponyms. Previous research has considered various patterns that are 

typical in the medical literature, including hypernyms [10] and frequent abbreviations 

[11]. Since annotated datasets could be increasingly valuable for exploring alternative 

NLP methods in these settings, we hope that the distributed eponym labels might 

likewise become useful for further experiments.  
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