
Secondary Use of Clinical Problem List 

Entries for Neural Network-Based Disease 

Code Assignment 

Markus KREUZTHALERa,1, Bastian PFEIFERa, Diether KRAMERb and  

Stefan SCHULZa 
a

 Institute for Medical Informatics, Statistics and Documentation, 
Medical University of Graz, Austria 

b
 Department of Information and Process Management, 

Steiermärkische Krankenanstaltengesellschaft m.b.H. (KAGes), Graz, Austria 

Abstract. Clinical information systems have become large repositories for semi-

structured and partly annotated electronic health record data, which have reached a 

critical mass that makes them interesting for supervised data-driven neural network 
approaches. We explored automated coding of 50 character long clinical problem 

list entries using the International Classification of Diseases (ICD-10) and evaluated 

three different types of network architectures on the top 100 ICD-10 three-digit 
codes. A fastText baseline reached a macro-averaged F1-score of 0.83, followed by 

a character-level LSTM with a macro-averaged F1-score of 0.84. The top performing 

approach used a downstreamed RoBERTa model with a custom language model, 
yielding a macro-averaged F1-score of 0.88. A neural network activation analysis 

together with an investigation of the false positives and false negatives unveiled 

inconsistent manual coding as a main limiting factor. 

Keywords. Natural Language Processing, Electronic Health Records, Machine 

Learning, Secondary Use 

1. Introduction and Motivation 

The clinical information system (CIS) of a large, multicentre public hospital provider in 

Austria stores short clinical problem descriptions in German (maximum 50 characters) 

together with which manually assigned codes from the International Classification of 

Diseases (ICD-10). This huge table fulfils three purposes: (i) collection of content that 

automatically fills the “Diagnoses” section when narrative discharge summaries are 

created, (ii) display of a problem-list like scrollable textbox in the CIS frontend, and (iii) 

provision of ICD codes for administrative purposes.  

Due to the technical limitation of 50 characters, the often-lengthy ICD-10 

descriptions are usually overwritten by the users, who use overly compact expressions, 

characterized by ellipsis, context-dependent abbreviations and acronyms, non-

standardised numeric values, spelling variants and errors. These text snippets exemplify 

typical idiosyncrasies of clinical language [1]. 
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Our work is centred on this resource. We wanted to investigate to what extent 

clinical real-world data is suited as training material for different types of multi-class 

classification approaches for automatic assignment of codes from the classification 

system ICD-10, and where it reaches its limits. We applied three different types of neural 

network (NN) architectures: a shallow NN, a recurrent NN and a transformer-based 

architecture for our experimental secondary use-case scenario of clinical routine 

documentation. 

2. Methods and Data 

We used ~1.9 million unique de-identified problem list entries and ignored all entries 

without ICD codes. A 90/10 split was carried out for training and test set preparation. 

We trained one model using the top 100 occurring three-digit ICD-10 codes, which cover 

about 50% of all code instances in the data set. Therefore, we scaled up all training 

samples of this highly imbalanced data set to the most frequent code, resulting in ~6 

million training samples (100 times ~60k observations). The test set based distribution 

of the 100 codes under investigation remained unchanged (~93k observations). 

2.1.  Neural Network Architectures 

Shallow. As a baseline, we used fastText [2], exploiting pre-trained skip-gram 

embeddings at subword and word type level from the training set. We used a simple rule-

based tokenizer2 and normalized all resulting tokens to lower case. 

Recurrent. Character inputs are modelled as 122 dimensional one-hot encoded vectors 

from the training set, together with an out-of-character-dictionary feature dimension in 

accordance to [3] for the input to the chosen LSTM [4] network. Deeplearning4j was 

used as implementation library. 

Transformer. For transformer-based architectures, we decided to apply RoBERTa [5]. 

We build our own language model, in order to support the downstream task with a first 

understanding of the language under scrutiny. To this end, we used ktrain, a lightweight 

wrapper library, for Hugging Face. 

2.2. Neural Network Interpretation 

In health care scenarios, regulatory frameworks require that decision support systems are 

able to explain the path that led to a certain suggestion. This is optimally met by decision 

trees, but poses complex challenges for NNs. Established approaches are LIME (Local 

Interpretable Model-Agnostic Explanations), SHAP (SHapley Additive exPlanations) or 

the notion of saliency as being the norm of the gradient of the loss function to a given 

input, an approach successfully applied in clinical NLP domains [6] for explainable 

machine learning systems. In this work, we were particularly interested in character-wise 

feedback for the overall classification result via the inspection of certain class 

probabilities at certain positions of the LSTM sequence model. This allows the 

identification of activation levels at this granular input representation scheme, because 

single characters have significant impact on the correct interpretation of narrative content. 

 
2 [ˆ\p{IsAlphabetic}\p{IsDigit}] 
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2.3. Evaluation Metrics 

We evaluated the performance of the trained model on the test data set using precision, 

recall, and F1-score per ICD-10 code, as well as macro-evaluation statistics. The 

following definitions were used: true positives (TPs) – the number of correctly assigned 

codes; true negatives (TNs) – the number of correctly unassigned codes; false positives 

(FPs) – the number of incorrectly assigned codes; false negatives (FNs) – the number of 

incorrectly unassigned codes. Exploiting this definition, precision P = TP / (TP + FP), 

recall R = TP / (TP + FN) and F1-score = 2 · P · R / (P + R). 

3. Results and Discussion 

Table 1. Selection of test set based evaluation results using RoBERTa. 

Evaluation of the test set with 92,832 problem list entries yielded an overall macro-

averaged F1-score of 0.83 for the fastText baseline, 0.84 for the LSTM, and 0.88 for the 

RoBERTa approach. Table 1 shows the evaluation on an ICD-10 three-digit level. The 

left side of the table shows the top 10 best performing codes, the right side shows codes 

with a macro-averaged F1-score less than 0.75. We got the highest F1-score value for the 

ICD-10 code P07 (“disorders related to short gestation and low birth weight, not 

elsewhere classified”) and the lowest one for Z03 (“medical observation and evaluation 

for suspected diseases and conditions”) for all three different NN architectures. 

Interestingly, LSTM, which solely relies on character-level inputs, showed about the 

same performance as the fastText baseline. This provides strong evidence that the LSTM 

network is highly sensitive to even minor variations of character sequences that are 

relevant for the correct ICD code assignment. We decided to investigate this further by 

performing a network activation analysis of the LSTM. 

3.1. Explainable AI 

What can be seen at the top of Figure 1 is the network stimulation for the correct class 

I25 (chronic ischaemic heart disease) for the German input “Kononare Herzkrankh. 1 

Gefäß – 1 x DES in LAD” (coronary heart disease. 1 vessel – 1 x DES in LAD). The 

intensity level corresponds to the class level probability for a given code at a given 

position and varies between zero and one. A low-level intensity therefore corresponds to 

M. Kreuzthaler et al. / Secondary Use of Clinical Problem List Entries790



a low probability for the class shown on the right in the figure. This snippet exhibits the 

typing mistake “Kononare” instead of “Koronare” (coronary), an ad-hoc abbreviation 

“Herzkrankh.” for “Herzkrankheit” (heart disease) and two acronyms. “DES” stands for 

“drug-eluting stent”and “LAD” for “left anterior descending (artery)”. It is principally 

the last part of this input string that strongly supports the code I25. In contrast, the same 

string has a very low feedback activation for the ICD-10 class E11 (type 2 diabetes 

mellitus), as expected. 

 

 
Figure 1. Activation heat map with respect to a given class at a certain character position. 

 

The centre of Figure 1 displays the result of the experiment in reverse. We see the 

network activation for the input “Diab. mellitust Typ 2, HbA1c: 43 mmol/mol” (diabetes 

mellitus type 2, HbA1c: 43 mmol/mol) and its corresponding correct code E11. Again, 

there are ad-hoc abbreviations “Diab.'' for “Diabetes” and the typing mistake “mellitust” 

(correct “mellitus”). With the occurrence of the digit “2” in the input string, the network 

responds with a very high activation at this position for type 2 diabetes mellitus. “HbA1c” 

(glycated haemoglobin) is also an important diabetes biomarker. Conversely, there is 

very little feedback activity for the class I25, resulting in low probability values for the 

whole input sequence. 

At the bottom of Figure 1 the input activation for the same string is contrasted with 

E10 (type 1 diabetes mellitus) and E14 (unspecified diabetes mellitus). As seen before 

with the appearance of the character “2”, there is strong evidence for E11. Nevertheless, 

for E10 and E14, there are clearly observable activation levels. This inspection supports 

our assumption that, for certain ICD-10 code sections, the network will intermix classes 

if there is no clear consistent exclusive manual coding. Nevertheless, the network tries 

to interpret the input as well as possible with respect to the training data. 

4. Conclusion and Outlook 

We presented an approach for the assignment of short clinical problem list entries to 

ICD-10 three-digit codes using three different NN architectures: a shallow NN (fastText), 

a recurrent NN (LSTM) and a transformer-based architecture (RoBERTa) which 

performed best with an overall macro-averaged F1-score of 0.88. The fastText baseline 

evaluated with a macro-averaged F1-score of 0.83, the LSTM approach modelling the 

problem purely on character-level reached a macro-averaged F1-score of 0.84. In a 

character-level based heat map, we visualized LSTM network activations to a given input. 

Thus, we could trace classification decisions back. TP, FP and FN analyses revealed that 

the trained network suffered from coding inconsistencies (e.g., E14 versus E11). 
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The preliminary experiments presented in this paper emphasize the potential of 

secondary use scenarios of annotated semi-structured clinical real-world data for 

building NN-based applications such as the assignment of disease codes. Taking 

advantage of such resources is needed for data-driven applications such as the generation 

of clinical BERT models [7] for languages other than English, like German, where to the 

best of the authors knowledge a model is not available by now. There is yet an 

unexploited potential of NNs to bridge the gap between standardized code entries and 

the language used in the routine of clinical documentation and communication. 

Identifying and leveraging annotated language resources as presented in this paper could 

be a step in this direction. 
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