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Abstract. Deep Learning architectures for time series require a large number of 
training samples, however traditional sample size estimation for sufficient model 

performance is not applicable for machine learning, especially in the field of 

electrocardiograms (ECGs). This paper outlines a sample size estimation strategy 
for binary classification problems on ECGs using different deep learning 

architectures and the large publicly available PTB-XL dataset, which includes 

21801 ECG samples. This work evaluates binary classification tasks for Myocardial 
Infarction (MI), Conduction Disturbance (CD), ST/T Change (STTC), and Sex. All 

estimations are benchmarked across different architectures, including XResNet, 

Inception-, XceptionTime and a fully convolutional network (FCN). The results 
indicate trends for required sample sizes for given tasks and architectures, which 

can be used as orientation for future ECG studies or feasibility aspects. 
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1. Introduction 

Twelve-lead electrocardiograms (ECGs) are complex time-series which require a large 

amount of manual expertise and time for annotation. Still, they give insights for many 

heart malfunctions and diseases. Automating and increasing the classification of these 

tasks are an important part for the future of ECG-based precision medicine. With the 

advancement of machine learning in the recent years, many possibilities arise in life-

sciences. However, medical datasets are scarce, but machine learning and especially deep 

learning preferably require large datasets. Additionally, traditional sample size 

estimations are hardly applicable for machine learning, and it is arduous for the large 

variety of architectures and different tasks [1][2]. Pre hoc estimates are based on model 

parameters, but are challenging to compute, especially for the increasing complexity of 

architectures. This paper aims to introduce a large-scale post hoc sample size estimation 

on different architectures for binary classification tasks on ECGs, by computing and 

fitting the learning curve. This gives researchers insights and guidelines for required 

samples, as well as the ability to estimate a sample size for new studies of automatic 

ECG-classification. 
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2. Methods 

2.1.  Dataset 

The training is conducted on the PTB-XL v1.0.2 [3][4][5] with a sampling rate of 100Hz, 

including 21801 samples. The tasks are binary classification for the PTB-XL diagnostic 

super-classes Myocardial Infarction (MI), Conduction Disturbance (CD), ST/T Change 

(STTC), and sex. For each classification task, the dataset consists of single labeled NORM 

(healthy controls) and the respective diagnostic superclass. For sex-classification, only 

NORM annotated ECGs are selected. The training was conducted on predefined folds 1-

8 using shuffled stratified sampling, with a variable number of samples from 100 to a 

maximum of 4000. To complement the increasing training-samples size, the validation-

set increases linearly alongside up to the complete fold at 4000 train-samples. Yet, a 

minimum of 7.5% of the validation-fold is defined for those train-sample splits which 

would result in a lower fraction. This estimates dataset splits in real world conditions and 

constricts the minimal number of samples for a quality validation estimate. The 

validation- and test-datasets are fold 9 and 10 respectively, as suggested by the authors 

of PTB-XL, as these include manual curation. The label distribution for the validation 

and test set are given in Table 1. 

 

Table 1. Normal/anomaly and male/female distribution in the datasets (rounded). 

 CD MI STTC Sex 
Validation .187 .255 .278 .972 
Test .202 .281 .265 .880 

2.2. Training 

The training is conducted with python3.9 using tsai [6]. The chosen architectures are 

partly based on highest benchmark scores [7]. These include XResNet1d101, 

InceptionTime, XceptionTime and FCN. Each training is conducted 25 times for each 

number of samples and each architecture, resulting in 225 datapoints for each individual 

architecture and classification task. The initial learning rate is estimated via an initial run 

of a learning rate finder [8]. The 1cylce policy [9] with a maximum number of 500 epochs, 

early stopping callback with a � � ���� and a patience of 50 with validation loss as 

monitoring metric is utilized. The chosen loss function is weighted Cross Entropy. Each 

sample is standardized independently using batch transformations. The training is 

conducted on a NVIDIA A40 GPU with a train-batchsize of 1024. Testing and validation 

are conducted using an equally large batchsize of 1024. 

2.3. Evaluation 

The half standard deviation around the mean, means (dot-markers) and a logarithmic 

trendline with �	
� � � 
 �����	
� � �  for each architecture is plotted. A combined 

average plot is computed via the equally weighted average of all binary classifications. 

The optimal-threshold-point (x-markers) is given by the highest deviation between the 

trendline and a linear function, which is computed via the origin and trendline value at 

4000 samples, for each architecture respectively. This illustrates the point of maximum 

score and diminishing returns of the gained performance in relation to extra samples. 
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3. Results 

Figure 1 shows the balanced accuracy score (BACC) for each of the individual selected 

targets. It stands out that XceptionTime is in the two top performers with InceptionTime, 

except for MI-classification, for which the latter performs the worst. XResNet performs 

very close, but slightly better to a FCN in CD, MI and STTC, while falling behind in sex-

classification by a small margin. The peak performance is mostly reached for all models 

at 4000 samples, with an exception. MI-classification of InceptionTime is stagnating very 

early at � 1000 samples. The optimal-threshold-point is distributed differently for all 

architectures and all targets between � 370-1030 train-samples. XceptionTime requires 

most train-samples for all targets, while InceptionTime requires the least, except for CD-

classification. 

 

Figure 2 visualizes the combined average performance. It clearly outlines the highest 

average performing XceptionTime. However, the trendline clearly state the necessity of 

slightly �1000 samples to outperform all other architectures in mean. This fact is 

underlined with the highest optimal-threshold-point of �  840 train-samples. Yet, 

InceptionTime performs the best in average for � 1000 number of train-samples. At � 

Figure 1. BACC-score gain over baseline of binary classification for different architectures and classification 

targets: Conduction Disturbance (CD), Myocardial Infarction (MI), ST/T Change (STTC), Sex. 
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530-610 samples, all architectures, except XceptionTime, perform with the highest 

BACC/sample-ratio, but still having a rather high standard deviation. 

 

Table 2 shows the size and label distribution in the validation-set for a train-set with 

530 samples. Considering the growing validation-dataset, these additional samples have 

to be included in the perspective. Therefore, a total of � 650 samples, depending on 

architecture and target, are required for achieving comparable results, as shown 

previously. 

 

Table 2. Label distribution in the validation dataset for 530 train-samples (interpolated). 

Type CD MI STTC Sex Type 
Normal 120 120 120 61 Male 
Anomaly 22 30 33 59 Female 
Total 142 150 153 120 Total 

4. Discussion 

The highest BACC/sample-ratio is naturally dependent on the classification target, but 

also on the chosen architecture. Whereas XceptionTime excels with a larger number of 

samples and consistently outperforms other models, InceptionTime performs the best in 

the averaged mean over all targets in the range of 100-1000 train-samples. Yet, it 

performed worst in MI-classification. Therefore, we advise to conduct training with at 

least two architectures for a specific target, to double-check inconsistencies for the 

specific task. 

Figure 2. Average BACC-score gain over baseline of binary classification for different architectures. 

L. Bickmann et al. / Post Hoc Sample Size Estimation for Deep Learning Architectures 185



5. Conclusion 

This paper shows results and a guideline for a preferred minimum number of samples, 

which yield the highest per-samples-scores. For a lower number of samples (< 1000), 

InceptionTime performs the best, otherwise XceptionTime excels. We suggest a minimal 

train-size of � 530 samples for most applications, to exploit the highest BACC/sample-

ratios. The train- and validation-set should therefore contain at least ���650 samples 

combined. Test-samples are not included in this approximation. We only evaluated 

binary classification as a first step, and it remains interesting which outline can be drawn 

for multi-class, -label and regression tasks in future research. Additional apprehension 

could be drawn for other targets and additional datasets as well. We suggest another 

study with additional tasks, such as regression, using the same environment and 

parameters. To summarize, this sample size estimation for binary classification tasks on 

electrocardiograms indicate helpful guidelines for further research. 
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