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Abstract. The last decade has seen a large increase in artificial intelligence research 

within healthcare. However, relatively few attempts of clinical trials have been made 
for such configurations. One of the main challenges arise in the extensive 

infrastructure necessary, both for development, but particularly to run prospective 

studies. In this paper, infrastructural requirements are first presented, together with 
constraints due to underlying production systems. Then, an architectural solution is 

presented, with the aim of both enabling clinical trials and streamline model 

development. Specifically, the suggested design is intended for research of heart 
failure prediction from ECG, but is generalizable to projects using similar data 

protocols and installed base. 
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1. Introduction 

The last decade has seen a large increase in research of artificial intelligence (AI)-enabled 

algorithms within many industries, including health care. Particularly for specialties 

relying on extensive data during diagnostics, such as radiology and pathology. Initial 

development, by these modelling techniques, often use performance evaluations limited 

to retrospective data in laboratory settings, [1]. To realize the potential, and incorporate 

the models into production, additional clinical testing is necessary; ensuring real world 

performance, effectiveness and safety. However, there are currently relatively few 

attempts of such studies and most rely on small populations or non-randomized tests, [2]. 

Recently the development of electrocardiogram (ECG) classification using machine 

learning reached desirable performance for various tasks on retrospective data, see e.g. 

[3]. Similarly, such ECG classification models need further clinical testing before 

deployment, [4]. Nevertheless, clinical trials require comprehensive preparatory work; 

both with regards to study design but especially in enabling infrastructure, connecting 

parts of the underlying health care system. Particularly, allowing prediction models to 

run in real-time and clinicians to interact with inference results. Then, how can we design 

an infrastructure that supports efficient development cycles of AI in health care, 

including clinical trials? 
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This paper aim to first present the infrastructural challenges concerning clinical trials 

of AI-enabled algorithms, including the precedent stages of model development, within 

an established healthcare production system. Then, present an infrastructure not only 

enabling clinical trials but also supporting faster development; by integrating data mining, 

training and prospective studies into a single platform. Specifically, the presented design 

is intended for development of heart failure prediction models using ECG, but is 

generalizable to systems relying on the same design principles. 

2. Background 

AI-enabled algorithms in healthcare have traditionally been built based on machine 

learning algorithms, such as neural networks, [5]. Most often, retrospective data is used 

for both training and evaluation, presuming the recorded data is representative for the 

total inference population. However, the model may not necessarily be able to 

extrapolate or generalize outside of the training domain. To prevent deployment of 

models with limitations in real-world performance, either due to discrepancies in training 

and inference population, overfitting or other model deficiencies; further prospective 

studies are carried out for validation, [1]. 

Prospective studies are generally divided into performance validations of the model 

or clinical trials, i.e. effectiveness evaluation of the system as e.g. decision support. In 

the former, after reaching sufficient accuracy on retrospective testing data, the model is 

queried for inference on prospective data. Such processes can be executed in the 

background without interfering with the regular production, since involvement of 

clinicians are unnecessary. Monitoring processes can also be implemented to detect 

performance drifts, either due to temporal changes or erroneous assumptions of the 

inference domain. After extensive testing, reaching sufficient performance on both retro- 

and prospective data, the latter type of study can be implemented. Clinical trials add an 

additional layer by including a feedback loop between clinicians and the model, to try 

out the intended interaction. This type of study may also provide metrics for usefulness, 

efficiency, quality, ease of learning, response time etc., in a real-world setting. 

The key enabler to all developing stages is an efficient infrastructure. Model 

development requires access to relevant databases with the possibility of linking 

information to build datasets, in the process of data mining. Validation requires data 

streaming of prospective data and real-time inference capabilities. Finally, the clinical 

study needs writing access to production systems, without risking interruption of regular 

activity and patient safety. All requirements need to be delivered while also being 

compliant with data and privacy regulations, [6]. 

Designing an architecture that satisfies the requirements, is heavily dependent on the 

underlying IT infrastructure. The installed base is commonly classified as either a 

centralized system, via a platform, or distributed system, consisting of IT silos. The 

former usually hosts a common core with the distinct modules running as applications 

on top of it, transforming the infrastructural- to a software problem. In this scenario, 

clinical trials can be executed as additional applications with permission to access 

relevant data sources. However, most health care systems today run the latter, distributed 

system; with modules hosted within their own IT silos, often using different standards, 

[7]. Although not inherently wrong, IT silos generally provide more flexible solutions; 

the interconnection gets increasingly challenging in this scenario, relying on both 

hardware and software, [8]. 
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3. Method 

An architectural design of a platform for AI development, including clinical trials, is 

suggested based on the general requirements discussed in the previous section. The 

platform is specifically intended to be used for heart failure prediction models using ECG 

data on a distributed installed base. The explicit requirements for the system are: 

� Linking retrospective ECG data from a picture archiving and communication 

system (PACS), [9], with medical records and external data (national medical 

registers), to do data mining in a safe contained environment. 

� Connect external compute infrastructure for model training and inference. 

� Enable real time data streaming of incoming ECG data. 

� Enable write capabilities into the PACS. 

� Prevent the system from causing interruption of regular production and comply 

with regulation. 

4. Infrastructure 

Figure 1. Schematic overview of the suggested infrastructure, arrows indicate data flow. Components of the 

installed base are represented by black, externally hosted resources are indicated by orange and suggested 

infrastructure by blue. 

The main part of the suggested infrastructure consists of a research platform, serving as 

an interconnection of the required subsystem hosted within their representative IT silos, 

see Fig. 1. The PACS handles incoming ECG data, either from the clinics or from 

ambulances over an emergency medical service network. The network uses the digital 

imaging and communication in medicine (DICOM)-standard, [10], and data transfer is 

done via a main PACS application server. Each case is stored within a production 

database with the respective ECG waveform data in a dedicated file storage. To prevent 

interruption of the regular production pipeline, a clone of the database and ECG storage 

is installed. The clones are not only connected to the research platform, but also recipient 

of external information relayed through the application platform using DICOM-SR. The 

latter closes the feedback-loop, again, without potentially interfering with production. 

The research platform mainly acts as a gateway, running data services such as data 

mining, anonymization and compute communication. These services can be hosted at 

two distinct layers with different permissions, where the first layer handles sensitive data 

and the second layer only has access to anonymized data and non-sensitive information. 

Therefore, ECG data from the PACS enters the platform at the first layer, together with 

medical records and externally provided sensitive data. This allows for data mining, 
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generating training datasets of the recorded retrospective data, necessary for model 

development. As datasets are generated, indexing is stored in a local database at the first 

layer before anonymization and exportation to the second layer. At the second layer the 

platform has access to external compute infrastructure allowing for model training and 

inference. Finally, as previously mentioned, the research server may communicate 

directly with the PACS application server, allowing feedback in terms of inference 

results. This channel also allows the PACS to directly send inference requests to the 

research platform without going through the PACS database. 

5. Implementation 

The implementation was done at Akershus University Hospital using ComPACS as 

PACS, LifeNET as provider for the emergency medical service network and DIPS for 

medical records. The research platform was hosted using two servers with mirroring for 

redundancy and real-time patching capabilities. Each service could be hosted in a 

contained virtual machine with the required permissions. Finally, cloud computing was 

provided by Google Cloud Platform, connected through the corresponding developer kit, 

only having access to data storage containing pseudonymized data. 

6. Discussion 

The presented infrastructure not only enables clinical trials, but streamlines the process 

from model development to production deployment. Data mining is done directly on the 

research platform, which is particularly useful if data inclusion needs to be iterated. 

Prospective studies can run as background processes of the production systems, with 

real-time monitoring from the research platform, without relying on clinicians relaying 

relevant cases. Finally, clinical studies are executed in the same environment as 

development, which is consistent with regular production. This also simplifies the 

process for clinicians accustomed to the production systems. 

6.1. Data regulation 

Although the platform has access to the production systems, the data available for 

processing is strictly limited by data regulation. This is an additional benefit of running 

clones of the production databases, serving as an intermediate data layer. However, in 

order to use medical records, both for retrospective and prospective data, relevant permits 

and ethical assessments needs approval. In particular, due to the consent paradigm, 

consent either needs to be collected from patients already in the registers, or new data 

needs to be collected from consenting patients. Such regulations are often adapted to 

traditional medical research, conforming to data minimization principles, unlike machine 

learning relying on extensive data, [11]. 

On this note, Norway recently legislated exemption from the consent paradigm when 

collection of consent or new data is unfeasible; and the data usage is considered to be of 

significant benefit and unharmful, in ethical reviews (Helseperonelloven Kap.5 §29). In 

projects approved for exemption, data mining is significantly easier since the targeted 

data is directly cloned into the separate storage. 
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6.2. Limitations 

This study investigates infrastructure for clinical trials and efficient AI development 

cycles, particularly aimed to be used for heart failure prediction modelling. It is also 

constrained to an installed base using distributed IT silo systems. The suggested platform 

is thereby tailored for this specific use case. However, these constraints and installed 

base are commonly used within healthcare, [7]. The solution is also generalizable to 

projects using similar data setups e.g. data from an archiving system and medical records. 

Performing clinical trials of AI-enabled models require a human machine interface 

(HMI) to provide feedback to clinicians. Detailed examination of HMIs is left out of this 

study, where PACS is used as communication channel. Although having the benefit of 

being a regular production system, the effectiveness as mediator is not investigated. 

7. Conclusion 

This paper investigates efficient designs of infrastructure for AI development in 

healthcare, enabling clinical trials. Such solutions are heavily dependent on the installed 

base, but in general needs data mining capabilities from relevant sources, access to 

compute power, real-time data streaming of prospective data and writing permissions in 

production systems; all while not risking interference with regular production and 

complying with data regulation. The suggested solution is intended for development of 

heart failure prediction models using ECG data, but is generalizable to projects using 

similar setups. By deploying the platform, the full development cycle is streamlined, 

from model training to clinical trials. However, further investigations are needed for 

effective HMI design. 
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