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Abstract. Data analysis and their application are the unavoidable factors in the 

activities analyses in health care. Unfortunately, the acquisition of data from large 

available medical databases is a complex process and requires deep knowledge of 

computer science and especially knowledge of tools for data management. 

According to the European General Data Protection Regulation, the problem 

becomes much more complex. Recognizing these problems and difficulties, we have 

developed a Data Science Learning Platform (DSLP) that primarily targets 

practitioners and researchers but also the computer science students. Using our 

proposed tool chain together with the developed graphical user interface, data 

scientists and research physicians will be able to use available medical databases, 

apply and analyze different anonymization methods, analyze data according to the 

patient’s risk and quickly formulate new studies to target a disease in a complex data 

model. This article presents a clinical research discovery toolbox that implements 

and demonstrates tools for data anonymization, patient data visualization, NLP-tools 

for guideline search and data science learning tools. 
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Introduction 

Data analysis and their application are becoming an essential aspect in the domain of 

health care, especially in the field of intensive care. The developed data analytic tools 

can provide a basis for classification problems in health care, e.g., the classification 

between normal data and anomalies. These tools will be furthermore useful to identify 

sub-groups of patients in a given population. Due to the large amounts of data, medical 

doctors are facing challenges to recognize symptoms and to identify disease in early stage 

as well as to choose optimal treatment [1].  
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The data is often very complex and exists in different medical systems and the 

doctors need a fast access to the right information at the right time. Even with very 

experienced physicians, this can be a complex task. It is essential for researching 

physicians to have available test data that they can easily statistically analyze and 

combine. Moreover, the results provided by machine learning, e.g., disease prediction or 

risk, could also help them to build more efficient models by adjusting patients parameters 

on one side, and to combine it with guideline recommendations on the other side. In the 

recent years, there are a lot of studies that use the power of Artificial Intelligence for the 

design of risk prediction models [2], [3][4]. The Risk Based Toolbox was created 

following systematic literature review and recommendation as well as survey of clinical 

trial units [5]. A detailed review and the principles of anomaly detection algorithms in 

the different types of medical problems are described in [6]. Each of these algorithms 

work well on special types of data and computer scientist and statisticians were in the 

most cases the targeted user group for this type of research. There are furthermore 

numerous published examples of powerful computational tools - clinical decision 

support systems - installed in hospital, that can for example identify critical values 

automatically and help clinicians in decision [7],[8]. The semantic CDSS systems based 

on ontology and application of fuzzy ontological reasoning in the medical guidelines are 

presented in recent studies [9], [10]. The different anonymization methods are earlier 

presented in [11][12][13] and implemented in anonymization tools [14]. We recognized 

the lack of integration of the mentioned models into a useful research and discovery tool 

that will be primarily intended for analyzing, learning, researching and testing the results.  

Our goal is that the proposed model and toolbox primarily target learning clinical 

researchers who are newcomers to the two areas; artificial intelligence and medicine. The 

computer science students and data scientists will also find this toolbox helpful with their 

studies to understand and analyze the results provided by AI algorithms, to understand 

the process of anonymization, machine learning, NLP and fuzzy logic and to be able to 

use and to easier analyze big data. To ensure that the data, which is continuously 

collected, can also be used by researching physicians in an appropriate manner to their 

tasks, a Graphical User Interface (GUI) is developed that can also be operated efficiently 

and effectively by this user group. 

1. Material and Methods 

According to the European General Data Protection Regulation (GDPR), the health data 

are treated “as a "special category" of personal data which is considered to be sensitive 

by its nature” [15]. For demonstration purpose, we used the MIMIC-III 100 patients 

database provided by [16][17]. As the MIMIC-III patients’ data are already anonymized, 

in our application we used synthetic tool [18] to generate patient data and to test and to 

improve the anonymization methods.  

The enclosed program was created in the object-oriented C\# programming language 

using the .NET framework, where windows are GUI controls of the .NET Framework. 

Microsoft Visual Studio 2019 was used as the development environment. For testing data, 

the open-source synthetic data generator Synthea was used [18]. The software is 

integrated with Python code where the model for risk prediction [19] is investigated. 

PostgreSQL as open-source object-relational database and the Matlab Fuzzy rule 

database are used for the primary data management. The code for our tools can be found 

at https://gitlab.rlp.net/l.begic899724/dslp. 
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2. Methodology and Design 

We developed a graphical user interface that consists of the four-parts anonymization 

tool, patient simulator tool, risk prediction tool and guideline tool (Figure 1).  

 
Figure 1. Data Science Learning Toolbox. 

 

The first anonymization tool contains five different parts as it is presented in Figure 

2. The first functionalities (No. 1 and No. 2 in Figure 2) represent the data import process, 

where the files' format can be a CSV-file generated from the various data sources. The 

properties of the attributes of the data are displayed in No. 3 in Figure 2. 
 

 
Figure 2. Anonymization toolbox 

 

To anonymize the data, a hierarchy is required for each quasi-identifying attribute 

(No. 3 and No. 4 in Figure 2). At this stage, the application offers the different 
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anonymizations’ algorithms: k-Anonymity [11], Distinct l-Diversity [12] and t-

Neighborhood [13] (No.5 in Figure 2). The button marked as No.6 in the same Figure is 

used to transfer the input data and the specified information to the next level, in which 

the individual created nodes are checked via the OLA algorithm [20]. The patient 

simulator toolbox simplifies the procedure of formulating complex SQL queries to get 

patients' results for different parameters like lab events, vital signs or the parameters that 

integrated more data to construct an event e.g., mechanical ventilation or medication 

treatment. The users in a simple way pick up and match the patient data according to the 

desired criterion and have the statistical analysis and visualization for every available 

parameter over the different time interval. The guideline tool represents a 

recommendation engine where over 1020 different recommendations from 45 guidelines 

[21] are stored in a database and can be used by different search criteria.  

Additionally, using our recently published NLP-FUZZY algorithm [19] we created 

a procedure for automatic recommendation extraction from guidelines and insertion of 

recommendations from guidelines to the database. The proposed NLP-FUZZY algorithm 

combines capabilities of Natural Language Processing (NLP) and Fuzzy Logic 

approaches. In the first step, the NLP-FUZZY performs a semantic extraction of medical 

guidelines using a bi-directional Long Short-Term Memory (LSTM). Subsequently, 

using the extracted semantic, it creates fuzzy rules, which are able to recognize new cases 

in a learning domain while predicting and extracting the grade of recommendation.  

The last toolbox (Figure 3) brings together the results of merged waveform patient’s 

data from the patient simulator toolbox, the risk prediction algorithm based on Dynamic 

Time Warping- Dynamic Barycenter Averaging (DTW-DBA) [4]  approach and the 

medical guidelines engine. In the learning phase of the DTW-DBA algorithm, a statistic 

approach in combination with DTW is used to merge all patients in "positive on disease" 

and "negative on disease" classes and create a Dynamic Time Warping Barycenter 

Averaging analysis for each feature [19]. In the second classification phase, validation 

data sets are used to validate the precision of classification (No.1 - No. 2 in Figure 3). 

Additional adjustments such as frequency and positioning in the graph gives to user an 

opportunity to analyze the graph and risk results in selected segments as well as in chosen 

time slots (No. 3 in Figure 3). In the risk simulation, the stable vital parameters are 

presented with the blue line, and in the moment where risk is recognized, the graphs' 

lines change their color in red. When the risk is recognized, the risk percentage is shown 

and in the same moment the recommendations connected with the disease are offered to 

the clinician (No. 4 in Figure 3). Here the complete statistical analysis over the patients 

with the most similar symptoms are done and according to it, the most appropriate 

recommendation is singled out (No. 5 in Figure 3). Expected results for vital sign 

parameters after the suggested recommendation (based on previous statistical analysis 

over the most similar patients) are also presented to the researcher. The information about 

the recommendation strategy and the statistical analysis over the patients with the similar 

patient condition gives the young physician the opportunity to analyze different risk 

patterns and possibly find out some hidden properties in patients states. The developed 

tools in this paper are prototypes and research demonstrators for training purposes and 

showing the work process of a future research tool chain. However, further research is 

needed especially in the field of the clinical applications and use-cases. 
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Figure 3.  Risk prediction toolbox. 

 

Here especially knowledge from medical experts is required to identify/classify, e.g., 

anomalies in the time series and to connect them with a real medical event. This solution 

represents a useful tool to connect experts from the computer science with health experts 

and to evaluate upcoming novel data analysis approaches and algorithms. 

3. Conclusion and Future Work 

In our work, we presented the development and implementation of the Data Science 

Learning Platform (DSLP) for research physicians. The first purpose of the DSLP is to 

offer research physicians the possibility to simplify the data acquisition from Healthcare 

Big Data without knowing complex SQL queries and other computer science techniques.  

The combination of Natural Language Processing and Fuzzy logic is demonstrated in 

real guideline examples and the automatic extraction and insertion of the guidelines are 

provided for research. The last tool in our DSLP is an integrated risk prediction algorithm 

based on DTW-DBA approach. Here, the physicians have an opportunity to analyze the 

patient's risk, analyze suggested recommendations as well as estimated vital sign 

parameters after recommendation application. The next step in DSLP will be to 

implement synthetic data platform using ML techniques. Here the research physician 

will have opportunity to generate synthetic data to match sample data, where the 

important properties of sample data are reflected in synthetic data. 
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