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Abstract. The history of medicine is punctuated by conquests, discoveries and 

revolutions. It is also marked by questioning. It is made of doubts and certainties. In 
this thousand years old history, certain recent battles bear witness to these 

questionings, such as quality, refocusing on the patient, medical errors, antibiotic 

resistance and the importance of gender, which has been neglected for so long in 
medicine. Digitalization is one of these many revolutions, and it is not immune to 

questioning.  Building evidence and trust, equity of access for neglected populations, 

and training are among these issues. More specifically, in the field of decision 
support, the first enthusiastic hours of computing were followed by unexpected 

observations, such as the identification of human factors, such as alert fatigue. 

Today, immense hopes rest on the development of deep learning, and it is up to us 
to accelerate its development by investing energy, time and resources to build on 

evidence, trust, and a strong integration of health professionals and patients. 
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1. It all started because there are humans and there are Ancient Gods 

Asclepius is supposed to be son of God Apollo and Coronis, a mortal woman from 

Trikala, Thessaly. There has been numerous children of Greek Gods and mortals, and 

there was more that made the birth of Asclepius so extraordinary. Coronis fell in love 

with Ischys, a mortal man, during her pregnancy, which made Apollo furious, and the 

God sent his sister Artemis to kill Coronis. Artemis burned Coronis on a funeral pyre. 

Apollo rescued the unborn baby by cutting open the womb of the burning mother. This 

is thought to have been the first Cesarean section in human history. Apollo entrusted the 

baby to wise centaur Chiron, famous for his skills in medicine, who became his mentor, 

making Asclepius becoming a famous and highly-regarded healer [1]. 

The history of mankind and the history of medicine are paved with complex 

relationships between beliefs and science, between human aspirations that draw their 

essence from the world of the Gods, and the reality of life that plunges its challenges into 

our human condition. 

The Iliad of Homer describes the great plague which decimates the Greek army as a 

consequence of a human’s unjust actions offended the gods [2]. The disease kills and 
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mutilates. On the other hand, for some like Fritz Zorn, in Mars, disease mutilates, strikes, 

irreparable and inescapable, and it is also, paradoxically, liberating: " wherever it hurts, 

it is me " [3], illustrating how disease can be perceived as redemption. 

The concept of normality is an important driver in medical science, and medicine 

driven at understanding what causes deviations, how to detect them, to prevent them, and 

to correct them. 

As a result, there is a scientific translation of this dichotomic, Manichean vision of 

the world, diseases are measured as deviations from the “normal”. Cure consists in 

reducing, or cancelling, this deviation. 

The disease and its therapies, as well as the bearers of this knowledge, have always 

been confronted with a double component, science and pragmatism on the one hand, but 

also, on the other hand, beliefs and divinatory practices. The diagnosis and actions 

belonged to the diviners, the shamans, and the priests; the decisions and prognosis 

belonged to the Gods. With Hippocrates, the conception of medicine entered a more 

structured and rational approach. It took a long journey through time in the West to arrive 

at Harvey's demonstration of the circulation of blood, thus introducing mechanics into 

medicine; or Morgagni and the anatomical method, to name only two of a long and 

prestigious list of scientists (Vesalius, Sydenham, Auenbrugger, Corvisart, Laennec, 

Louis, Mueller, Osler, …) who have allowed the development of today’s medical science. 

Medical science isn’t just about scientific knowledge. It is also a lot about a singular 

relationship. Already with the school of Hippocrates, the importance of questioning the 

patient, his medical history, the specific history of a specific disease, the physical 

examination, where it was considered as cardinal aspects of medicine. Building an 

understanding of the case, which than was improved with increased knowledge on 

disease nosology (Sydenham), and the use of various tools such as percussion 

(Auenbrugger), stethoscope (Laennec), ophthalmoscope (Helmoltz), which started a 

long list still growing today. All of it leads to careful, meticulous, and precise description 

of the knowledge about a context, embedded in a larger knowledge, the images, the 

anatomy, bio pathways, physiology, and of course patients, differential diagnosis, 

therapies, evolutions. The science of medicine is now in the era of personalized medicine, 

and is increasingly seen as a deterministic cascade of events, starting with the DNA and 

ending in a complex network of causal elements up to environment and lifestyle building 

arrays of risk factors, evolution, prognosis [4,5]. 

2. And computers joined humans and Ancient Gods 

In 1982, Peter Szolovits edited an AAAS symposium on “Artificial Intelligence in 

Medicine” held at the 1979 AAAS National Annual Meeting in Houston (TX), which he 

generously reconstructed in HTML and made available in Internet [6]. This collection 

illustrates the “Greek Oracle” vision of electronic decision support in medicine, 

combining sophisticated approaches and computing techniques to properly represent 

expert physicians, so that it becomes possible to produce tools for improving health care. 
Several pioneer systems are presented by their authors, such as INTERNIST, a diagnostic 

aid using on a large database of disease/conditions and manifestation associations 

building partionning functions; EXPERT and the Glaucoma Program based on 

physiological models for diseases; MYCIN, a rule-based program for infectious diseases; 

the Digitalis Therapy Advisor, an interpretable order entry support for prescription of 

digitalis; and ABEL, using pathophysiologic models for decision support of acido-basic 
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and electrolyte abnormalities. These early pioneering systems triggered a wave of 

developments and new approaches. For example, QMR, successor of INTERNIST-1, 

used a homology function, a numeric score assessing how "alike" any two diseases are 

[7]. So much so that in 1992, 10 clinical experts created a test set of 105 diagnoses and 

compared the 4 best decision support systems available at the time (Iliad, Meditel based 

on Bayesian logic; Dxplain, QMR using semi-quantitative probabilistic associations of 

findings). The results found that the proportion of correct diagnoses was 0.52-0.71 and 

the mean proportion of relevant diagnoses was 0.19-0.37, so that less than half of the 

diagnosis suggested by experts was proposed by any of the 4 systems [8]. 

In 2011, it was estimated that the doubling time of medical knowledge in 1950 was 

50 years; in 1980, 7 years; in 2010, 3.5 years and in 2020 projected to be 0.2 years—just 

73 days [9,10]. The explosive growth of knowledge in medicine and life sciences is way 

beyond human’s brain capacities. 

The second part of the 20th century was fed by an extraordinarily enthusiastic wave 

of hopes that computers would support a new revolution in medicine, that of the 

computerization of medical records, of the simplification of medical data acquisition and 

processing, and of course of the support of medical decision making and patient care. 

3. Errare humanum est, perseverare diabolicum 

Patient safety concerns in the healthcare system has been a key element to boost 

digitalization and electronic decision support systems. Between 1990 and 2000, several 

alarming reports raised the awareness on care safety in healthcare systems [11–13]. At 

the turn of the Millennium, reports of the Institute of Medicine estimate that preventable 

fatal medical errors of all types cause between 44’000 and 98’000 deaths per year in the 

USA, among them about 7’000 due to medication-related errors [14]. In the same report, 

it is estimated that patients in hospitals could face more than one drug related error per 

day. In 1995, the pioneer work of Bates et al. and the associated editorial of Kahn in 

JAMA demonstrate and underline the preventable nature of drug prescription errors 

[15,16]. Of all adverse events, 1% were fatal and not preventable in this work, 12% life-

threatening, 30% serious, and among them, 42% were preventable. This work 

demonstrated that adverse drug events were common and often preventable [15] and, in 

2003, Bates et al. published a list of recommendations to achieve best decision support 

systems in clinical environments [17]. 

The following ten years have been remarkable at developing and deploying digital 

solutions in hospitals, and especially computerized providers order entry (CPOE) with 

all sorts of computerized decision support systems, alert modalities, user interfaces, and 

numerous studies evaluating and assessing the impact of these systems, reported in 

numerous peer-reviewed publications. For example, a positive effects on patient 

outcomes such as fewer duplicates, dosage errors, drug-drug interactions [18–21], 

improving cost-efficiency of care, either directly, as enumerated above, or indirectly, for 

example in reducing lengths of stay or rehospitalizations [22–24]. 

As these systems were increasingly and massively deployed, however, some 

concerns started to raise about their effectiveness or unintended effects [25]. In 2013, 

Jung et all. published a large international study analyzing the attitude of physicians 

towards alerting in CPOE systems which concluded that while most physicians found 

alerting system useful, half of them found alert overload as a major problem [26], and 

started constructive discussions on how to address these concerns extremely well 
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summarized in a comment to this work by Bates et al. [27]. The critical importance of 

predictive values and false positive rate have been well summarized in a systematic 

review published by Carli et all. in 2018 which reports PPVs ranging from 8% to 83% 

with most results between 20% and 40% [28]. 

Altogether, the learnings of that period can be summarized in few key points: 

� User interface, human-machine interactions and processes are key. 

� Positive (PPV) and negative predictive values (NPV) are major determinants. 

� Which requires accurate and timely knowledge and clinical data. 

� Which requires a highly connected and interoperable clinical information 

system. 

One of the key challenges is missing interoperability. To quote the literature review 

of Ahmadian : “Lack of semantic interoperability is the most important obstacle in 
clinical decision support system implementation” [29]. 

4. The Pandora dilemma 

Decisions are influenced by numerous determinants, such as deep knowledge about the 

patient (clinical data, genomics, …) and his living context, knowledge (the global science 

of medicine and biology), and local information such as a-priori probabilities for 

Bayesian evaluations. They are also influenced by the effect of decisions, such as their 

impacts, but also the resources required, the time, the cost, etc. 

Digitalization provides increasingly access to more data which opens the hope to 

improve massively decision support. Among the numerous sources more and more 

available, the clinical data originating in health electronic records (EHR) have massively 

increased. There are many reasons behind this, one of them being the need to improve 

efficiency of care processes, resource management and billing processes. These forces 

have led to unintended effects, mostly at increasing burden on health care providers, 

leading to a high workload interacting with EHR at the cost of patients time [30–35]. 

This effects is more important for US physicians than non US-physicians [36]. 

Additionally, digitalization has facilitated the development of tools to improve, increase 

and fasten data acquisition by care providers. For example, the work of Holmgren at al. 

has observed that up to 77.5 US physicians composed automatic notes, leading to 

information duplication. CPOE has been shown to decrease errors and is widely adopted, 

however has also been shown to potentially produce errors, such as wrong routing, wrong 

dose, and duplicates [37–39]. 

More data of better quality is made available thanks to digitalization, which itself 

increases data acquisition burden for care providers and potentially leads to data quality 

challenges, such as duplicates. EHR’s have become the source of data for many different 

usages. Patient care is the primary reason, but there are countless other needs, such as 

planning resources, regulatory documentation, quality measurements, certification and 

accreditation, billing, clinical research, public health, etc. All of these have contributed 

to increase and diversify the data acquisition processes. 

In 2018, Stanford Medicine mandate Harris Poll to do a national survey of over 500 

primary-care physicians (PCPs) on EHRs and reported the following key points [40]: 

� PCP see value in EHRs but want substantial improvements. 
o 63% of PCPs think EHRs have generally led to improved care (63%) 
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o 40% believe there are more challenges with EHRs than benefits 

o 62% of time devoted to each patient is being spent in the EHR 

o 49% of office-based PCPs think using an EHR detracts from their clinical 

effectiveness 

o 71% physicians (71%) agree that EHRs greatly contribute to physician 

burnout 

o 59% think EHRs need a complete overhaul 

� EHRs are not seen as powerful clinical tools but rather storage systems 
o 44% of PCP think EHR is essential for storage. 

o 8% say the primary value of their EHR is clinically related 

� Physicians agree on what needs to be fixed and when 
o 72% think that improving EHRs’ user interfaces could best address EHR 

challenges in the immediate future 

o 67%) consider interoperability deficiencies should be the top priority for 

EHRs in the next decade 

o 43% want improved predictive analytics to support disease diagnosis, 

prevention, and population health management 

Altogether, it seems that decision support in EHRs has brought a lot, but at a high 

cost and without achieving yet its full potentials. The wave of massive data is now 

moving to the era of actionable data, which is the rise of semantics. 

Science has been driven by understandability and the hypothetico-deductive 

approach proposed by Karl Popper in his cornerstone work on building a rational 

approach of science [41,42]. This work has considerably influenced science based on 

experimentation, reproducibility, and refutability. It thus comforted the development of 

decision support systems based on formal and verifiable knowledge. In medicine, it had 

several consequences. One of them was the idea that any complex system can be 

decomposed in small verifiable and simple components. In this movement, decision 

support systems have built increasingly large set of rules, originating from experts, from 

knowledge database, observations, understanding of physiology, metabolism. It has soon 

become impossible to keep the pace of such systems with the parallel massive increase 

of knowledge in all fields of medicine. In addition, the compositionality of decisions-

based processes, that is that complex decisions can be made from numerous simple and 

verifiable smaller elements, has been increasingly questioned. All of it has open the door 

to the Pandora “black box” reasoning, which is one of the challenges of deep learning. 

Building post hoc interpretability and explainability [43–45]. 

5. Sysiphus and the new Eldorado 

Interoperability has been shown to be at cornerstone of decision support. Interoperability 

means being able to put together many different data sources, modalities, and types 

considered a complex temporal framework. However, addressing interoperability is a 

complex question, as it requires to take into account the meanings of things being handled, 

their definitions and interpretations in various contexts. Decision taking processes are 

usually based on meaningful determinants interpreted with various instruments. 

At the beginning of the second book of his “Posterior Analytics”, Aristotle claims 

that there are four questions for investigating the nature of things and their properties, 

whose answers lead to demonstrable knowledge, or knowledge of a “scientific” nature. 
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� That it is (to hoti): Is it a fact that a thing has a property? 

� Why it is (to dioti): Why does a thing have a property? 

� Whether it is (ei esti): Does a thing or property exist? 

� What it is (ti esti): What is the nature and meaning of a thing or property? 

Building decision support systems is thus also facing the question of the nature of 

decision processes. For example, which decision processes do require intelligence, and 

which type of intelligence. One of the learning of the evolution of decision support 

systems in CPOE is that despite the fact that every rule is excellent with a low false 

positive rate, with the typical complex cases taken care off and the huge size of 

knowledge base, systems will fire thousands of rules for each case, thus with a high 

probability of having a few false positive. And, consequently, the system has a low 

predictive positive value. A comparison of two commercial products recently published 

by Shah et al. has reported that the one system triggering 94% fewer alerts for inpatients 

and 93% fewer for outpatient setting also had much higher sensitivity and specificity, 

with PPV of 83.81% versus 3.55% (p< 0.0001%) for inpatients and PPV 82.54% versus 

4.84% (< 0.0001) [46]. Or the unexpected application of the Less is More Medicine [47]. 

Artificial intelligence, as a field of computer science, was born in the aftermath of 

the Second World War. History says that the term Artificial Intelligence was coined by 

McCarthy, during the Dartmouth Summer Research Project on Artificial Intelligence, a 

scientific workshop organized in the summer of 1956 by Marvin Misky and John 

McCarthy, in which about twenty researchers from many disciplines participated, and 

who have left their mark on history (Claude Shannon, Ray Solomonoff, Olive Selfridge, 

Herbert Simon, Alan Newell, etc.) [48]. 

In truth, the very definition of intelligence is subject to debate, and the same is true 

for artificial intelligence. These questions were already raised more than 50 years ago, 

leading Alain Turing to propose his famous Turing Test, which consists in having a blind 

observer examine a conversation between a human and a machine. If the observer is not 

able to identify the human and the machine in the conversation, then the test is passed[49]. 

In recent years, with the development of huge linguistic models such as GPT-3 from 

Google's subsidiary OpenAI [50,51], the performance of neural networks has required 

much more refined tests to evaluate whether these models are "intelligent" or simply 

gigantically probabilistic [52]. 

Data driven science and its corollaries in machine learning and the wider field of 

artificial intelligence (AI) have the potential to drive important changes in medicine. By 

nature, AI is a large field of research and development that requires multi-disciplinary 

approaches to address many aspects of it, from tools and methods used up to application 

fields. Since a few years, AI is mostly seen as the field focusing on autonomous learning, 

especially using methods regrouped under “Deep learning”. However, the landscape of 

AI research is much richer, and traditionally include knowledge representation and 

engineering; rule-based and symbolic reasoning; temporal reasoning and planning; 

sensing and perception; learning; evolutionary, emerging, social behaviors; and the 

ability to move and manipulate objects, to name the most important [53]. In one form or 

another, AI is already broadly used today in medicine. Decision support based on 

knowledge engineering and rule-based systems are implemented widely in CPOE 

worldwide. Advanced signal processing is implemented in pacemakers, implemented 

defibrillators to take decisions, in imaging to improve images, decrease irradiation, 

support diagnosis, in oncology to find the best matches between patients and existing 

literature, to quote a few examples. Consequently, the field draws at large through 
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philosophy, mathematics, information sciences, computer science, psychology, 

anthropology, social sciences, linguistics, and many other. 

This richness is also building silos between fields and generations of researchers, 

building waves of research and discoveries that repeat themselves across domains, and 

time. It is certainly an important hope of AI that it will help avoiding researchers to 

research and find what has already been researched and found. 

6. Conclusions 

The future of decision support in medicine is built around the evolution from 

complication to complexity. There is no one-fits-all solution to the wide area of decision 

support in medicine. Each problem will have to get the best answer, a sort of problem-
centric personalized decision support. For this aspect, a rule-based approach will work 

best. For another, it will be about Bayesian networks. 

Most of all, it is critical to enforce health technologies assessment towards digital 

health and artificial intelligence [54–56]. As written in a 2018 editorial of the 

Lancet :“Continuing to argue for digital exceptionalism and failing to robustly evaluate 
digital health interventions presents the greatest risk for patients and health systems” 

[57]. And also, make sure that no one is left behind [58], patients and care professionals. 

Abbreviations 

AAAS American Association for the Advancement of Science 

AI Artificial intelligence 

CPOE computerized providers order entry  

DL Deep learning 

EHR Electronic health record 

HTML HyperText Markup Language 

JAMA  Journal of the American Medical Association 

NPV Negative predictive value 

PCP Primary care physician 

PPV Positive predictive value 

QMR Quick Medical Reference 
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