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Abstract. Recent advances in machine learning show great potential for automatic 
detection of abnormalities in electroencephalography (EEG). While simple and 
interpretable models combined with expert-comprehensible input features offer  full 
control of  the decision making process, these methods commonly lag behind 
complex deep learning and feature extraction methods in terms of  performance.  
Here we study a feasibility of a bridging solution, where deep learning is combined 
with interpretable input and an algorithm computing the importance of particular 
EEG features in the decision process. We built a convolutional neural network with 
multi-channel EEG frequency bands as input and investigated four different 
methods for feature importance attribution: Layer-wise Relevance Propagation 
(LRP), DeepLIFT, Integrated Gradients (IG) and Guided GradCAM. Our analysis 
showed consistency between the first three methods, and deviating attributions of 
the fourth method, suggesting the importance of using a package of methods 
together to ensure the robustness of medical interpretation. 
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1. Introduction 

Modern machine learning (ML) systems are increasingly considered as an important tool 
in clinical decision support systems. However, some domains, such as 
electroencephalography (EEG) that measures electrical brain activity, remain 
challenging. An important issue remains the lack of transparency and interpretability of 
the best performing models, which typically use raw data or highly complex features as 
an input to the black box of deep learning neural networks. 
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In [1] we constructed an ML model to detect abnormalities in EEG recordings on 
the example of the Temple University Hospital (TUH) dataset [2]. In [3] we worked 
towards an understanding of the individual computational steps that lead to a 
classification of an EEG. The importance of individual EEG channels and the generated 
features in general was analyzed. Another possible direction of improvement is 
combining expert-interpretable features with deep learning models. In such setup, post 
hoc interpretability algorithms can be used to determine the importance of a given feature 
in the decision process. As a result, explanations of model decisions can be given in a 
user-interpretable format. In this paper, we explored this direction by building up on our 
previous work. We replaced difficult to comprehend wavelet input features with 
clinically-relevant frequency bands. These features were mapped to a grid for all 
electrode positions, generating an approximate head-map per sample. The resulting 
images were used as input to a deep learning (DL) model. This approach allowed us to 
consider different post hoc feature attribution methods and discuss their consistency and 
possible relationship with the results to the medical reasoning. 

The choice of the feature attribution methods is based on several works published 
on EEG interpretability. The Layer-Wise Relevance Propagation (LRP) has been 
previously applied to BCI-EEG data in [4] to generate heatmaps of feature importance. 
This way, Sturm and colleagues were able to explain with high-resolution at what point 
in time and at which electrodes on the head scalp the electrical activity was important in 
the model’s classification. Uyttenhove et al. [5] applied a different feature attribution 
method, GradCAM, to raw time-series EEG data to obtain clinically plausible 
attributions. DeepLIFT was used by Jansen et al. [6] to analyze the results of an artificial 
neural network trained on physiological network data of insomnia patients. Integrated 
Gradients (IG) is another common method for highlighting feature attributions [7]. 

2. Methods 

MNE (v0.24.1) [8] was used for accessing EEG data. PyTorch (v1.10.1) was used to 
develop and evaluate the machine learning model. To generate feature attributions using 
LRP, GradCAM, DeepLIFT and IG, we used Captum (v0.4.1) [9]. 

2.1. Data 

The openly available Temple University Hospital (TUH) Abnormal EEG Corpus v2.0.0 
[2] is used as our example. 2993 EEG sessions from 2383 subjects are included. Of those 
sessions, 93% were recorded with a sampling frequency of 250 Hz, the remaining 
sessions were sampled with 256 or 512 Hz. 1472 recordings are labeled as abnormal, the 
remaining 1521 as normal. The labeling of EEGs by the dataset authors is based on visual 
analysis of frequency, voltage, waveform, regulation, locus, reactivity and 
interhemispheric coherence [2]. The recordings are split into a training set of 2717 
recordings and an evaluation set consisting of 276 recordings. We trained models 
exclusively on the training set, and report model accuracy and feature attributions on the 
evaluation set. 
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2.2. Preprocessing 

Similar to Brenner et al. [1] and Mortaga et al. [3], we extracted the first minute of every 

EEG recording. All 21 electrodes were used. The 60 seconds of raw data were re-sampled 

to 250 Hz, band-filtered (1-50 Hz), and then divided into 11 sliding windows, each of 10 

second length with a 5 second overlap. Each segment was checked against a threshold 

for maximal amplitude. If more than 50% of all electrodes exceeded this threshold, the 

segment was removed. Lastly, on each remaining segment we calculated power spectral 

density (PSD) for the five clinically relevant frequency ranges (Delta: 1-3 Hz, Theta: 4-

7 Hz, Alpha: 8-13 Hz, Beta: 14-30 Hz, Gamma: >30 Hz) using Welch’s method with 

Hann windowing and 50% overlap. Our final dataset consisted of 27761 segments in the 

training set and 2813 segments in the testing set, with 5 PSD values for every single one 

of the 21 electrodes. Each segment was transformed into a 5x5x7 matrix that can be 

interpreted as a 5x7 image with five channels corresponding to the five frequency bands. 

All 21 electrodes were mapped as illustrated on Figure 1 – positions in the matrix without 

annotated electrodes were assigned zero-values to fill up the matrix format. These 

“images” consisting out of 175 individual features were used as input to the DL model. 

 

Figure 1. Grid used for mapping electrode positions into a 2D square. The colors illustrate the grouping per 

brain region used in algorithm comparison. 

2.3. Deep Learning model 

We constructed a Convolutional Neural Network (CNN) model to classify our segments 

as normal or abnormal. Our model consists of one convolutional layer (with 3x3 filters), 

a pooling layer, one fully connected layer with 128 nodes and a final output layer with 

two nodes representing the class probabilities. Due to the splitting of each EEG recording 

into 11 segments, we hypothesize that not all segments of an abnormal EEG exhibit 

abnormal morphologies. This may result in a decreased classification accuracy, as 

possibly normal-looking segments are labeled as abnormal. To mitigate this problem, we 

implemented a voting mechanism as in [1]. 

2.4. Post hoc feature importance attribution 

To understand and interpret the importance of our input features, we generated feature 

importance values using LRP [4], Guided GradCAM [5], DeepLIFT [6], and IG [7] for 

all 2813 testing segments. Note, that for GradCAM, we obtain relevance scores for the 

first convolutional layer. These algorithms make use of the given sample, network 
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structure, learned network weights, as well as outcome class of interest. For each of the 
175 individual input features, the algorithms return a (positive or negative) real number, 
indicating an importance of this feature to the outcome of interest. Positive attributions 
for a feature indicate that high feature values contribute towards the outcome of interest, 
while negative attributions indicate that low feature values contribute to the outcome of 
interest. Large absolute feature attributions are therefore considered important features. 
As our primary interest lies in the reasoning for why an EEG is considered abnormal by 
the model, we attributed feature importance for the abnormal class.  

2.5. Normalization and comparison of feature importance attribution 

Due to varying distribution and scale of different feature attribution methods, we applied 
the following normalization. Outlier removal was performed by first calculating the sum 
of all attributions for each segment and method. Based on the top and bottom third 
percentile of attributions for each method, we removed outlier segments. Following this, 
we normalized every attribution left across electrodes and channels to unit norm using 
L2-normalization before further processing the attributions. 

To view feature importance not only per sample but also across the evaluation set, 
we averaged attributions for abnormality across all samples. Further, we grouped 
electrodes into lobes (Frontal left: Fp1, F3, F7; Frontal right: Fp2, F4, F8; Temporal left: 
A1, T3, T5; Temporal right: A2, T4, T6; Parietal: P3, Pz, P4; Occipital: O1, O2; Central: 
Fz, Cz, C3, C4). To compare similarity between different methods, we calculated Mean 
Squared Error (MSE). For every combination of two feature attribution methods, we 
calculated MSE in attribution differences of a fixed feature (pairing of electrode and 
frequency band) for every single sample. We then averaged resulting MSE across all 
features, resulting in one MSE-based score for every combination of methods. 

3. Results 

During preprocessing, around 7% of all EEG segments were removed due to amplitude 
thresholding. After training the model, we achieved an accuracy of around 78% on the 
2813 segments of the testing set. When using the voting mechanism, accuracy increases 
to 81.4%. Model performance remains within acceptable range for the study purpose on 
the test set. This is on par with previous results of 80.15% accuracy in [3], outperforms 
the results of de Diego [2] (78.8%), but lags behind more complex models such as BD-
Deep4 (85.4%) [10] or ChronoNet (86.6%) [11]. Feature attributions were calculated for 
all test segments using all four methods. After removing 445 of these segments due to 
outlier values, we normalized and plotted results in Figure 2 and Figure 3. They visualize 
the attributions generated by the four methods for different electrodes/lobes and 
frequency bands. 

Results of the MSE-based similarity between methods are presented in Figure 4. A 
single MSE value is difficult to interpret, but Figure 4 shows high agreement between 
the results of LRP, IG, and DeepLIFT compared to agreement between GradCAM and 
any other method. Similar conclusion can be drawn from Figures 2 and 3. 
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Figure 2. Attributions for abnormality generated by the feature attribution methods. 

 

 

Figure 3. Average attribution values for abnormality, broken down into lobes, methods and frequency bands. 
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Figure 4. Pairwise mean squared error (MSE) between different attribution methods. Lower MSE indicates 

higher level of agreement between two methods. 

4. Discussion 

For the purpose of this study, we have constructed a DL model that uses interpretable 

frequency-based features extracted from the raw EEG data. The usage of a CNN 

preserves information about spatial position of the electrodes. As a main paper goal, four 

different methods for post hoc feature importance assessment were compared by a) using 

the medically relevant view of the electrode mesh on the head, b) grouping electrodes 

into larger brain regions and presenting averaged importance attributions separated by 

frequency bands and brain region and c) computing easy-to-compare MSE. 

While our model’s performance is notably similar to that of some other models from 

literature, we note that inferior performance compared to more complex models such as 

ChronoNet could possibly be attributed to our comparatively simple feature presentation 

as well as smaller network size. 

The head view shows clear visual similarities between three methods with 

GradCAM being an exception. This is further confirmed by the MSE table (Figure 4) 

and Figure 3 (line plot).  In Figure 2, we can also observe that, in agreement with the 

expectations, “dummy” electrodes on the 2D grid show little importance. We 

hypothesize that GradCAM’s non-zero feature attribution for these electrodes can be 

traced back to the method’s unique usage of convolutional filters and its handling of 

Rectified Linear Units in the neural network. Frontal lobes and the central part of the 

head in general have slightly higher importance. Signals from two temporal lobes 

(similar directions), parietal (directions opposite to the temporal lobes) and occipital have 

the strongest effects on the model prediction. High and low frequency bands are showing 

consistent effects. Interestingly, in the occipital lobe the alpha band clearly stands out, 

which is in agreement with the fact that large alpha band fluctuation related to e.g. 

closed/open eyes conditions manifest in the occipital lobe. The medical interpretation of 

the results should be taken with cautiousness, due to the fact that the labeling of the 

discussed data set is not controlling for drug usage and it has been reported that 

medications used to treat epilepsy can affect certain frequency bands [12].  

Our work clearly demonstrates both benefits and risks of using feature attribution 

methods to explain model decisions. On the one hand, calculated feature attributions 

confirm that the model puts relevance on properties of the EEG signal that are in line 

with medical expectations. The consistency of some methods allows us to place a certain 
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trust in the functioning of the respective feature attribution methods. On the other hand, 
inconsistency of others highlights the need for extensive testing and comparison of 
multiple feature attribution algorithms in the context of EEG data.  

In the further work, we will work towards preparing a small data set where both 
labeled normal and abnormal fragments will be available from the patients who are in an 
ongoing diagnostic process and therefore are not yet receiving pharmacological 
intervention. The control for alertness level and age is equally important, as those factors 
are known to affect the EEG spectrum strongly. Meanwhile, analysis of text-files 
provided in the TUH dataset for every EEG, describing patient and recording, will be 
performed. This could enable meaningful validation of feature attributions on the level 
of individual EEG recordings. Moreover, other datasets in the TUH Corpus contain 
labels for specific types of abnormalities in EEG recordings. These may be used to 
further validate obtained results. 

5. Conclusion 

The paper presents one of several possibilities of constructing human-interpretable ML 
models for EEG data. The constructed ML model establishes reasonable accuracy, is 
light weighted and allows to easily test different algorithms for post hoc feature 
importance attribution. Three of the four tested algorithms showed very consistent 
results. The inconsistency of the fourth one suggests that if the proposed approach is used 
for clinical purposes, several different algorithms should be tested to increase the 
robustness of the importance interpretation. 
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