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Abstract. Incorporating healthcare data from different sources is crucial for a better 
understanding of patient (sub)populations. However, data centralization raises 

concerns about data privacy and governance. In this work, we present an improved 
infrastructure that allows privacy-preserving analysis of patient data: vantage6 v3. 

For this new version, we describe its architecture and upgraded functionality, which 

allows algorithms running at each party to communicate with one another through a 

virtual private network (while still  being isolated from the public internet to reduce 
the risk of data leakage). This allows the execution of different types of algorithms 

(e.g., multi-party computation) that were practically infeasible before, as showcased 

by the included examples. The (continuous) development of this type of 
infrastructure is fundamental to meet the current and future demands of healthcare 

research with a strong emphasis on preserving the privacy of sensitive patient data. 
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1. Introduction 

Healthcare data are usually scattered over many silos, making bringing them together a 

real challenge. In recent years, we have seen the rise of privacy-preserving 

frameworks that tackle this issue [1]. These allow analyzing the data without centralizing 

them, leaving them at their original source. Researchers can send their queries and 

receive an aggregate (e.g., model coefficients) in return. These pose a drastically smaller 

risk of data leakage (since they do not contain any personal information) while still being 

practically as accurate as their centralized counterparts. 

Most of these frameworks lack flexibility and can only be used for specific data 

partitions. Moreover, they generally require all machines to be directly accessible within 

the same network. Lastly, many healthcare environments have strict data firewalls which 

block direct incoming network communication from outside the organization to protect 

the data, but that can also hamper the execution of certain (non-malicious) algorithms. 

In this paper, we introduce the latest version of our framework for privacy-

preserving analysis, vantage6 v3. In this new version, we added secure direct node-

to-node (n2n) communication, which enables the usage of existing libraries for privacy 
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preserving analysis with the additional security that our framework provides. First, we 

outline the design of the framework. After that, we describe our implementation of n2n 

communication and illustrate how this can be used to incorporate other libraries for 

privacy preserving analysis. We close our paper with some real use cases that have 

benefited from the new functionality and future outlook. 

2. Methods 

In vantage6, a researcher can send a question to the central server, which provides a 

communication interface, handles administrative tasks (e.g., user authentication), and 

communicates with the nodes. The nodes execute the chosen algorithm and report results 

back to the server, which can then be retrieved by the researcher. In a collaboration, each 

party hosts a node and has full control over which data may be accessed by which 

algorithms. A complete description of vantage6’s basic architecture can be found in [2]. 

In the original infrastructure, algorithms were completely isolated to minimize the 

risk of data breaches. This was achieved by placing the algorithm containers in a 

(Docker) network that only allows for communication within the network itself. We have 

upgraded vantage6’s infrastructure to version 3.0 (v3) to allow algorithms running on 

different nodes to communicate with one another via a virtual private network (VPN) 

connection. Importantly, the nodes can only communicate via the VPN network, and are 

otherwise still isolated from the public internet. This n2n communication broadens the 

range of applications that can be executed using vantage6 (Sec. 3.1). 

2.1. Infrastructure 

Figure 1 shows how we extended vantage6 with n2n communication. When a node is 

started, a separate VPN client container is also initialized, which handles the VPN traffic 

of all algorithms that run on that node for a particular collaboration. This way, each 

algorithm has its own communication channel over the VPN network. 

For such a connection, the node requests a VPN configuration file from the 

vantage6 server on startup, which is fetched by vantage6 from the VPN server (which 

uses OpenVPN) and is sent back to the node. Next, the node starts a VPN client container 

that establishes a VPN connection. The VPN IP address for this node is sent to the 

vantage6 server where it is stored. 

The next step is to enable the VPN client containers on different nodes to 

communicate with one another. First, the VPN client container is configured to drop all 

internet traffic except for VPN traffic. Then, the container is attached to the isolated 

Docker network. Finally, the host network on the node machine is configured to direct 

incoming VPN traffic to the isolated network bridge and vice versa.  

When an algorithm is initiated, its container is configured to communicate incoming 

and outgoing traffic via VPN. Note that the actual algorithm is not started until the VPN 

connection is fully set up, to prevent an algorithm trying to communicate too soon.  

For incoming traffic, the algorithm developer may specify on which port(s) the 

algorithm may be reached by exposing them in the Docker file that is used to build the 

algorithm image. Note that exposing a port makes it available to the VPN client container, 

but does not expose the port outside of the (safe) isolated Docker network. By default, 
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one port is exposed on the algorithm container. For each port that is exposed, a free port 

on the VPN client container is reserved. All incoming traffic on that port is forwarded to 

the paired port on the algorithm container. The VPN client’s port number together with 

the port label are sent to the vantage6 server, where they are stored. Algorithm 

containers can request the addresses of other algorithm containers involved in the same 

task, which allows them to communicate with other nodes at any point in their execution. 

Outgoing traffic is routed via the VPN container, which is possible because the container 

is in the same isolated Docker network. 

At this point, all VPN communications are set up. The execution of the algorithm 

can be started and will be able to communicate with algorithms on other nodes over VPN. 

 

 

 
 

Figure 1. The improved infrastructure of vantage6 v3. Notice that nodes can only communicate 

through the VPN network and are still isolated from the (public) internet to minimize the risk of data 

breaches. 

3. Results 

The presented (and latest) version of vantage6 is being actively used by several parties 

in a variety of projects that leverage its new features. 

3.1. Applications 

This new version allows the implementation and execution of algorithms based on multi-

party computation (MPC). In short, MPC is a group of techniques (based on 

homomorphic encryption and secret sharing) that perform computations on encrypted 

data while protecting the privacy of the data at hand. Usually, the overhead of these 

computations can be quite large (especially on large amounts of data), making the 

execution of accurate MPC algorithms impractical or even infeasible. vantage6’s new 

ability to allow n2n communication drastically reduces the execution time for MPC-

based computations, making them more accessible and usable for real-life scenarios. 

This has allowed the development of MPC tools for regression models and survival 

analysis [3], which would not have been feasible with vantage6’s previous version. 
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In another interesting use case, the University of Maastricht is collaborating with the 

Netherlands eScience Center to find out how socio-economic and medical factors 

influence the risk of heart disease by using data from different parties. Taking advantage 

of vantage6 v3’s new features, a privacy-preserving n-party scalar product as well as 

other MPC-based methods are currently being developed for secure data analysis [4]. 

4. Discussion and Conclusions 

This new release consolidates vantage6’s functional principles of autonomy (allowing 

each party to be in control of their own data), heterogeneity (permitting differences 

across parties), and flexibility (allowing analysis of horizontally- or vertically-partitioned 

data using either federated learning or MPC techniques). Moreover, its new features have 

a huge potential for the creation and further development of privacy-preserving 

algorithms. Many external analysis libraries that require n2n communication can now be 

used in a secure environment, increasing the scenarios in which vantage6 may be used. 

We are continuously improving the vantage6 infrastructure. Currently, we are 

working on facilitating the use of common data models and standards such as OMOP-

CDM [5] and FHIR [6] to enable research FAIRification. We are also working on 

horizontal scaling to ensure that the server can handle workloads more efficiently, as 

well as developing a graphical user interface, which will make it more accessible and 

easier to use by the (healthcare) scientific community. We are also working on extending 

the tools for integrating the input of the vantage6 community. Besides our main 

website, we launched a Discourse group, where users can find tutorials, showcase their 

own projects, ask questions, and even connect with other members. We believe that the 

community’s support will make vantage6 a better platform for everyone. 

In this paper, we explained the changes and improvements of vantage6’s latest 

release. We also presented a few examples of projects and initiatives where these new 

features have allowed for a wide variety of novel privacy-preserving analysis techniques. 

We believe that the development of this type of infrastructure is crucial to meet the 

current and future demands of healthcare research with a strong emphasis on preserving 

the privacy of sensitive patient data. 
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