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Abstract. Discriminating the cell organelles from microscopic images is a 

challenging task due to their high similarity in image appearance. In this work, an 

attempt has been made to differentiate nuclei, Endoplasmic Reticulum (ER) and 
cytoplasm using a texture pattern descriptor and Random Forest classifier. For this, 

Cell Painted public dataset from Broad Bioimage Benchmark collection are 

considered. Texture features are extracted from each image using Non Local Binary 
Pattern (NLBP) that captures the relationship between global pixels and sampling 

instances in a local neighborhood. Non local central pixels called anchors are 

derived from central pixels of image patches and compared with sampling instances. 
Binary string generated from this is encoded into 29 patterns. Statistical one-way 

analysis of variance (ANOVA) is performed to select significant features and are 

validated using Random Forest classifier. The dependency of classifier performance 
on the local patch radius (R) and the number of anchors (K) are also evaluated. The 

results indicate that 8 patterns out of 29 are showing strong inter class variability 

with high F value. Classification accuracy of 84% is achieved with R=3 and K=5. 
Experimental results demonstrate that the proposed work captures complex patterns 

in cell structure useful for differentiating cell components which can be employed 

for evaluating the cytotoxic effects in cell lines. 
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1. Introduction 

Cell Painting is an advanced imaging technique that uses different fluorescent probes to 

target specific cell organelles such as nuclei, Endoplasmic Reticulum (ER), cytoplasm, 

mitochondria and Golgi apparatus for profiling subtle patterns in cell structure [1]. From 

the previous studies it can be seen that textures of different cell components are different 
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[2]. Hence the spatial relationship in the Cell Painted microscopic images can be 

effectively measured by texture patterns. 

Local binary descriptors have received wide acceptance in characterizing the local 

features in an image [3]. Local binary pattern (LBP) and its derivatives focus on the 

spatial relation between central pixel and sampling instances in the local neighborhood 

[4]. These methods are inadequate in describing the long range pixel interaction that 

occurs outside a compact region which can also be considered as important for feature 

representation. In this work, wide range pixel relationship is captured by Non Local 

Binary Pattern (NLBP) based on global image statistics rather than local connected 

region in the image [5].  

2. Methods 

The proposed methodology for categorizing the cell organelles is described in Figure1. 

2.1 Image Dataset  

For this study, Cell Painted images of Human U2OS cells are obtained from Broad 

Bioimage Benchmark Collection [6]. 3456 images of nuclei,3456 images of ER and 3456 

images of cytoplasm in 16-bit grayscale of size 1080x1080 pixels are considered.  

 

 
Figure 1. Block diagram of proposed Methodology 

2.2 Non Local Binary Pattern 

To extract texture features, a  local image patch of size  x   with central pixel x is 

considered and their gray values are sorted in ascending order as given in the Eq. (1) 

                                                           (1) 

where  represents the gray value of the Nth sorted central pixel and N is the total 

number of central pixels [5]. The sorted pixels are then divided into K equal intervals 

and the anchors are calculated for each interval using Eq. (2) 

                                                                 (2)   

Where (1,…,K) represents the gray value of the kth anchor and  is the floor 

function. The center pixel and its neighbors are shown in Figure 2 by a yellow rectangle 

and anchors are computed for K=2. Each of these anchor values are compared with 

sampling instances of center pixels and binary pattern is generated based on given 

condition.These binary strings are further encoded into distinct NLBP codes for 

different R and P values based on Eq. (3).In this work, R=3 and P=24 are considered and 

hence 29 NLBP codes are obtained according to U value given by Eq.(4) 
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                                                 (3)   

where R is the local patch radius, P is the number of sampling instances, K is the 

number of anchors and U is a uniformity measure. U is expressed as  

 

 

  where    ,                   (4) 

 

Figure 2. Demonstration of NLBP code generation 

Statistical one-way analysis of variance (ANOVA) is carried out on these NLBP 

codes to select significant patterns and are fed to the Random forest classifier.  

2.3 Classification 

Random Forest algorithm is a widely used artificial intelligence technique in medical 

data classification due to their feature ranking and selection methodology on a random 

split basis. It splits the feature vectors into different sample sets and builds multiple 

decision trees with randomly selected features. Each decision tree produces result and 

finally, the average of multiple tree predictions is taken for decision making [7].  

3. Results and Discussion 

The representative images of nuclei, endoplasmic reticulum and cytoplasm are shown in 

Figure 3. It is observed that subtle differences between these microscopic images cannot 
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(a) (b) (c) 

Figure 3. Representative input images (a) Nuclei, (b) Endoplasmic Reticulum, (c) Cytoplasm 

be accessed on visual examination. The box plots shown in Figure 4 (a) and (b) are the 

energy distribution of representative patterns. It is evident from the box plots of patterns 

23,25,26 and 27 that there exists a wide difference between the interquartile range and 

median values of given organelles. Therefore, the spatial heterogeneity between nuclei, 

ER and cytoplasm are uncovered with these texture measures. 

The extracted NLBP features are analyzed for statistical significance using 

ANOVA. The patterns 1, 22,23 and 25 to 29 show higher F value which indicates strong 

inter class variability among cell organelles. It is observed that except pattern 1, majority 

of significant (p < 0.05) patterns capable of discriminating nuclei, ER and cytoplasm 

have uniformity measure greater than 2. This shows that NLBP quantifies non uniform 

patterns which corresponds to complex textures such as high curvature edges, lines and 

corners. 

 

  
(a) (b) 

Figure 4. (a) Box plots of patterns 23 & 25 ,(b) Box plots of patterns 26 & 27 

The effect of R and K on classification accuracy are shown in Figure 5(a) and (b). 

This method achieved an accuracy of 84% with R=3 and K=5.With increase in number 

of anchors K, NLBP progressively captures intensity variations of local patch with 

respect to the whole image. The increase in accuracy with increase in R and K is 

associated with the ability of NLBP to comprehensively capture the underlying spatial 

relationship in the microscopic images. 

Pawlowski N et al. [8] had proposed pre trained neural networks such as ResNet-

152, VGG 16, Inception-v3 for extracting meaningful features from cell painted images 

for classification and obtained an accuracy of 55.34%,66.02% and 70.87% respectively. 

Goldsborough P et al. [9] had presented Least Squares Generative Adversarial Network 

(LSGAN) for classification of mechanism of action of chemicals and achieved 68% 

accuracy. It is observed that the proposed method shows better performance with an 

accuracy of 84% than the state-of-the art methods. This indicates the clinical relevance 

of this study in Artificial Intelligence (AI) based solutions for problems in health 

informatics. 
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(a) (b) 

Figure 5. (a) Effect of local patch radius on the classification accuracy, (b)Effect of number of Anchors 

on the classification accuracy 

4. Conclusions 

In this study, differentiation of cell painted organelles using a Non Local Texture 

Descriptor with Random Forest classifier is performed. The results demonstrate that 

NLBP captures non uniform patterns that occur due to wide range pixel interaction in 

large neighborhoods. This method illustrates the feasibility of global image statistics for 

effective categorization of cell components in microscopic images. Proper selection of 

local patch radius and number of anchors are important for accurate classification. This 

work could be useful for analyzing the effect of cytotoxicity and understanding the 

reaction of chemical compounds in cell lines. The proposed machine learning based 

study aids in analyzing the cytological effects with minimum medical expertise. 
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