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Abstract. Ensemble modeling is an increasingly popular data science technique that 
combines the knowledge of multiple base learners to enhance predictive 
performance. In this paper, the idea was to increase predictive performance by 
holding out three algorithms when testing multiple classifiers: (a) the best overall 
performing algorithm (based on the harmonic mean of sensitivity and specificity 
(HMSS) of that algorithm); (b) the most sensitive model; and (c) the most specific 
model. This approach boils down to majority voting between the predictions of these 
three base learners. In this exemplary study, a case of identifying a prolonged QT 
interval after administering a drug-drug interaction with increased risk of QT 
prolongation (QT-DDI) is presented. Performance measures included accuracy, 
sensitivity, specificity, positive predictive value (PPV), and negative predictive 
value (NPV). Overall performance was measured by calculating the HMSS. Results 
show an increase in all performance measure characteristics compared to the 
original best performing algorithm, except for specificity where performance 
remained stable. The presented approach is fairly simple and shows potential to 
increase predictive performance, even without adjusting the default cut-offs to 
differentiate between high and low risk cases. Future research should look at a way 
of combining all tested algorithms, instead of using only three. Similarly, this 
approach should be tested on a multiclass prediction problem. 
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1. Introduction 

In the field of data science, it is common practice to use the ensemble modeling technique. 
In that technique, the word ensemble literally means together, where the data scientist 
uses different base models that work together to get a final outcome.[1] In ensemble 
modeling, literature often refers to two basic techniques, i.e. bagging and boosting.[2-4]  

In bagging, the researcher first selects a random sample that serves as input to a 
certain model to train that model, and repeats this process multiple times. In the end, all 
different trained models are aggregated to reduce the variance, for example by using the 
majority voting technique.[4, 5] In boosting, different models are build sequentially, 
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where the output of the previous model is used as input for the next model in order to 
reduce bias in the outcome.[6] Eventually, all models are then used together to obtain an 
overall prediction. 

In this manuscript, the authors did not prespecify what is meant by ‘models’ in the 
explanation of bagging and boosting written above. The simplest forms of these models 
are a decision tree (in case of a categorical outcome) or a decision tree regressor (in case 
of a continuous outcome), but other modelling techniques (e.g. linear or logistic 
regression models) can also be used in these ensemble modelling techniques.  

The performance of a final model is often expressed in terms of accuracy, precision, 
recall, or another performance characteristic.[7] In general, it is difficult to decide which 
model is the best model on overall, since different performance characteristics tend to 
focus on different desirable characteristics (e.g. having few false negatives). Therefore, 
researchers invented performance measures like the F1-score that combines both the 
performance measures precision (positive predictive value, PPV) and recall (sensitivity) 
by taking its harmonic mean to be able to compare models. 

In a clinical setting, such models can be incorporated into clinical decision support 
systems (CDSS) to determine when an alert to a healthcare professional should be 
triggered to support decision-making. The developer of such a CDSS is not solely 
interested in identifying positive cases (i.e., patients with a certain disease or symptom), 
but should also focus on negative cases (i.e., patients that do not have a certain disease 
or symptom).[8] This can be explained by the fact that a major drawback of  improving 
the sensitivity of a CDSS is that it becomes less specific, potentially leading to alert 
fatigue of that healthcare professional.[9]  

In this work, the authors are interested in increasing overall performance by 
complementing the best performing model (selected based on its harmonic mean of 
sensitivity and specificity (HMSS)) with models having the highest sensitivity and the 
highest specificity. 

2. Methods 

In an effort to increase model performance on a dataset for predicting QT prolongation 
after exposure to a drug-drug interaction with increased risk of QT prolongation (QT-
DDI), the authors used several algorithms (logistic regression, Gaussian Naive Bayes 
classifier, support vector machine, random forest, gradient boosting, etc.) to predict high 
and low risk patients. Prevention of drug-induced QT prolongation can in turn prevent a 
potentially lethal type of ventricular tachycardia called Torsades de Pointes (TdP)). In a 
systematic review, Arunachalam et al.[10] reported an incidence of drug-induced QT 
prolongation of 6.3%, while the incidence of TdP was 0.33% in patients exposed to drugs 
that prolong the QT interval. 

In an internal validation phase, 350 patients were modelled using 10-fold stratified 
cross-validation. Subsequently, an external validation was performed on 110 new patient 
cases to find a best overall model. Performance measures were reported in terms of 
accuracy, sensitivity, specificity, PPV, and negative predictive value (NPV). Overall 
performance was measured in terms of HMSS. The authors combined the best overall 
performing algorithm, with the most sensitive and the most specific model as 
demonstrated in Table 1. 

This new approach of combining prediction results can be viewed as using one 
default prediction outcome (algorithm 1), with two complementary prediction outcomes 
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of which one focusses on predicting positive cases (i.e., high risk cases – algorithm 2) 
and one focusses on predicting negative cases (i.e., low risk cases – algorithm 3). When 
algorithm 2 predicts a high risk case, the combined prediction will predict a high risk 
case as outcome. Only when algorithm 3 predicts a low risk case at the same time, the 
combined outcome falls back to the default algorithm 1. Similarly, when algorithm 3 
predicts a low risk case, the combined algorithm will return this prediction. Also here, 
the combined algorithm falls back to the default algorithm 1 when algorithm 2 predicts 
to be a high risk case and algorithm 3 predicts to be a low risk case. In all other cases, 
the default prediction outcome of the best overall algorithm 1 was used. 
Table 1. Prediction strategy combining the best overall, sensitive (precision) and specific (recall) algorithm. 

 Prediction 
algorithm 1 

 
(best overall) 

Prediction 
algorithm 2 

 
(best sensitivity) 

Prediction 
algorithm 3 

 
(best specificity) 

Combined 
prediction 

Algorithm to 
follow 

Case 1 Low risk Low risk Low risk Low risk 3 
Case 2 Low risk Low risk High risk Low risk 1 
Case 3 Low risk High risk Low risk Low risk 1 
Case 4 Low risk High risk High risk High risk 2 
Case 5 High risk Low risk Low risk Low risk 3 
Case 6 High risk Low risk High risk High risk 1 
Case 7 High risk High risk Low risk High risk  1 
Case 8 High risk High risk High risk High risk 2 

3. Results 

In Table 2, the results of the external validation were reported. The performance 
increased by combining the best overall performing algorithm (based on HMSS) with 
the best sensitive and the best specific algorithm. 

The overall performance, measured by the HMSS, of that combined algorithm 
increased with about 3% (i.e., from 63.49% in the best overall performing model 
(algorithm 1) to 66.57% in the new combined form). The accuracy increased with about 
5.5% (from 63.64% to 69.09%), the sensitivity increased with about 6% (from 62.50% 
to 68.75%), the specificity remained the same (64.52%), the PPV increased with about 
2.5% (from 57.69% to 60.00%) and the NPV increased with about 4% (from 68.97% to 
72.73%). (see Table 2) 

This combined form of prediction can – in a way – be interpreted as a special form 
of majority voting ensemble. The ensemble part in that wording refers to the three 
algorithms that are used to construct a new combined prediction and the majority voting 
part in that wording refers to the combined prediction that is in fact based on the majority 
of votes over the three algorithms (see Table 1). The majority vote resulted in a positive 
or negative case (i.e. respectively high or low risk for QT prolongation after 
administering a QT-DDI) when respectively two or three of these selected models 
predicted a positive or negative case. 

 
Table 2. Summary of performance characteristics obtained after external validation. Performance 
characteristics increased by applying ensemble modeling of the best performing algorithms. 

Algorithm number 1 2 3 4 … Combined 
Accuracy 0.6364 0.4818 0.6909 0.6182  0.6909 
Sensitivity 0.6250 0.9375 0.4167 0.5833  0.6875 
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Specificity 0.6452 0.1290 0.9032 0.6452  0.6452 
PPV 0.5769 0.4545 0.7692 0.5600  0.6000 
NPV 0.6897 0.7273 0.6667 0.6667  0.7273 
       

Harmonic mean 0.6349 0.2268 0.5703 0.6127  0.6657 

Algorithm 1: Logistic regression with forward model building (best overall); Algorithm2: Gaussian Naive 
Bayes classifier (best sensitivity); Algorithm 3: Random forest with feature selection (best specificity); 
Algorithm 4: Random forest with feature selection; PPV: positive predictive value; NPV: negative predictive 
value; Harmonic mean: harmonic mean of sensitivity and specificity (HMSS). Only algorithm 1, 2 and 3 were 
used to construct the new combined prediction outcome. 

4. Discussion 

This study presents a way of increasing predictive performance by applying majority 
voting ensemble by combining the three most performant algorithms in terms of overall 
performance, sensitivity and specificity. The reason for using sensitivity and specificity 
stems from the fact that CDSS should both focus on identifying the positive and negative 
cases in order to keep alert fatigue as low as possible. This paper presents a case of 
finding an optimized prediction of a high risk for QT prolongation in patients exposed to 
QT-DDIs. It was shown that, by combining these three models or algorithms, all 
performance characteristics increased or remained equal to that of the original best 
performing prediction model. 

The strength of this approach is that it is fairly simple to obtain this increased 
performance: (a) consider a number of prediction algorithms, (b) conduct the training 
and evaluation of these models based on the internal validation dataset, (c) test all 
algorithms with an external validation dataset, and then (d) constitute a new combined 
model based on the performance characteristics of all models. A limitation of this 
approach is that it requires many different models before being able to select a model 
with a high enough sensitivity and a high enough specificity in order to find a possibility 
to increase overall performance. Another limitation to this approach is that it depends on 
only two measures (i.e., sensitivity and specificity). Moreover, these two performance 
measures can be increased or decreased according to the chosen cut-off that the 
researcher applies. For example, in logistic regression, a traditional cut-off is 0.50 for the 
predicted probability of a certain event (e.g., QT prolongation) in order to predict 
whether an event will occur or not.[11] Sensitivity analysis might find a more optimal 
cut-off in order to optimize the sensitivity-specificity trade-off. Another limitation is that 
algorithms that have 100% sensitivity or 100% specificity, e.g. the case when the 
algorithm either classifies each data instance as positive or negative, will not increase the 
performance. 

Therefore, future work will additionally implement a sensitivity analysis on all 
algorithms when performing the external validation in order to find an appropriate cut-
off before combining classifiers. This will prevent algorithms from having an utterly 
high/low sensitivity or an utterly high/low specificity. In this paper, we showed an 
example of a binary outcome (high or low risk for QT prolongation) by testing the 
performance of different classifiers. Future work should also assess the potential of using 
this technique in a multiclass setting. Moreover, to prevent this new approach from only 
taking the three best performing algorithms (respectively in terms of overall 
performance, sensitivity and specificity), future work might exist in finding a way to 
combine the information of all different models to boost the overall performance in an 
optimal way. 
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5. Conclusion 

In this study, the authors showed that combining the best performing overall classifier 
with the classifiers having the best sensitivity and best specificity, increased predictive 
performance. The approach is fairly simple once having multiple trained classifiers ready 
to be tested on an external dataset. The presented method boils down to a type of majority 
voting ensemble where three algorithms are combined using the most present predicted 
outcome as final outcome. 
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