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Abstract. The distributed nature of our digital healthcare and the rapid emergence 
of new data sources prevents a compelling overview and the joint use of new data. 

Data integration, e.g., with metadata and semantic annotations, is expected to 

overcome this challenge. In this paper, we present an approach to predict UMLS 
codes to given German metadata using recurrent neural networks. The augmentation 

of the training dataset using the Medical Subject Headings (MeSH), particularly the 

German translations, also improved the model accuracy. The model demonstrates 
robust performance with 75% accuracy and aims to show that increasingly 

sophisticated machine learning tools can already play a significant role in data 

integration. 
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1. Introduction 

The digital transformation is progressively changing our healthcare system and its 

disciplines. The rapid pace of digitization is also creating more new clinical data sources 

that need to be analyzed and integrated to be used together. This is of enormous 

importance for patient care because a data fusion of all sources allows a comprehensive, 

holistic overview. The fragmentation of digital healthcare into many proprietary 

individual systems and data formats makes the desired overview difficult and slows 

down technical innovations. The clinical data integration shall gap this fragmentation 

and is an essential foundation for further data processing. One suitable tool in this context 

is metadata [1], which is able to describe the diverse characteristics of information 

objects precisely. In addition to content and administrative information, they also 

suitably depict the structure and - with the help of annotations - the semantics. The 

semantic coding enables a better understanding of the described data but is only useful 

if the annotation is carried out extensively and is sustainable. It must be ensured that 

codes or the coding system also fit the described content of the metadata and that the 

annotations are carried out consistently [2]. In contrast, inconsistent annotations degrade 
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data quality and findability. Manual annotation is time and resource-consuming, so 

machine support is desirable [3]. However, this support should not simply propose codes 

but should incorporate previous annotations to ensure consistent annotation. The already 

annotated datasets provide implicit knowledge about previous annotations that should be 

used meaningfully. Neural networks are the state of the art to exploit this implicit 

knowledge and to support annotators. To our knowledge, there are no comparable 

approaches in the literature that describe a predictive model of semantic annotations for 

given German metadata. 

2. Methods 

The proposed approach uses a trained neural network-based model to propose semantic 

codes corresponding to a given metadata item. In the following, the used dataset and its 

preprocessing steps are described, as well as the architecture of the neural network. 

2.1. Dataset and Preprocessing 

The dataset originates from the MDM Portal [4], which collects medical data models, 

mostly electronic Case Report Forms (eCRFs) from clinical research form data. The 

MDM currently contains ca. 24.000 forms with 500.000 metadata items in 53 languages. 

The special characteristic of the MDM is the manual annotations of the forms using 

Unified Medical Lanugage System (UMLS) codes [5], which is done by medical experts. 

Since our work focuses on the annotation of German metadata, only forms in German 

were considered. A total of approx. 150.000 annotated German items were available, 

which described the question groups, the questions, and structured answer options. 

Before the dataset was used for training, it had to be cleaned, and then additional data 

was augmented. The cleaning removed samples with deprecated annotations and codes 

with less than 50 occurrences were sorted out. To increase the amount of training data 

and increase robustness, the dataset was augmented using the Medical Subject Headings 

(MeSH) [6]. The MeSH thesaurus which is mainly used for indexing and retrieval of 

literature appearing in MEDLINE/PubMed, provides German translations of subject 

headings. As this German version is included within the UMLS metathesaurus, the 

selection of codes leads to additional 11.700 samples.  

 

Figure 1. The input data are pairs of a UMLS code and the corresponding phrase, for example, the patient 

surname (in German). 

2.2. Network Architecture and Training 

The expected input is a metadata definition, a sequence of words representing the display 

text of the metadata item, e.g., “The name of the patient”. Sequential deep learning 

models, particularly recurrent neural networks (RNNs) and bidirectional long short-term 

memories (BiLSTMs), have shown robust performance on tasks which require the 
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encoding of short sequences of words [7, 8]. In order to predict the most probable 

semantic annotation, the input sequences are passed through trough the layers of a 

LSTM-based network responsible for transforming the definition into a computable 

representation, learning the sequential correspondences within the words of the 

definition, and predicting the most probable semantic code. The network architecture is 

shown in Figure 1. At first, the sequences are split into word tokens, and each unique 

word is represented through an index. These indices are passed into an embedding layer 

that transforms each word into a vector representation. These representations are passed 

into a two-tier BiLSTM layer and then into the last classification layer. The output is 

mapped to possible classes representing UMLS codes. 

 

 

Figure 1. The trained network is built of three consecutive layers. The embedding layers encoded the words 

into a computable vector representation, which will be used in the next layer. In the two-cell bidirectional 

LSTM, the word sequences (“Name des Patienten”) are learned and the resulting output is mapped on the 

labels in the linear layer. 

The network was implemented in Python using Pytorch and is available on Github [9]. 

The embedding layer was parametrized with 26433 unique words and 128 dimensions, 

the two-tier BiLSTM with 32 hidden dimensions. The input and output dimensions of 

the linear classifier were set to 25992 representing every possible code in the datasets 

and with two times of the hidden dimensions of the BiLSTM since the output dimension 

is double due to the fact of using a BiLSTM.  

We use an 80/20 training/test split. 20% of the training data are then used for 

validation during the training to determine the optimal number of training epochs. An 

Adam-optimizer with a learning rate of 0.01 is used. The training was carried out for 250 

epochs with a batch size of 5000. A cross-entropy loss function is used weighted by a 

factor where l is the current length of the phrase and lmax is the maximal 

phrase length in the training set. The intuition behind this weighting is to give each word 

the same relative importance to the loss, such that short and one-word phrases do not 

overweight long phrases.  

3. Results 

Different variants were trained to identify the best network configuration. The depth of 

the BiLSTM layer was varied to achieve the best accuracy on the given data set. The best 

configuration was trained for another experiment with German GloVe embeddings [10] 

instead of the inbuilt embedding layer. These embeddings were trained on large text 

bodies and can better detect synonyms in the data. However, the accuracy was lower 

compared to the learned embeddings. Then the configured networks were trained with 

and without the augmented data. The results of the experiments are shown in Table 2, 
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where Tk indicates that the predicted label was contained in the top k most probable 

predictions. The best results were achieved by a two-tier BiLSTM closely followed by 

the one-tier architecture. Furthermore, the results underline the importance of augmented 

data and its potential to achieve even higher accuracy. Overall, a fair accuracy of ca. 67% 

could be achieved, where an even higher accuracy of 75% can be observed when the ten 

best predictions are considered.  

Table 1. The table shows the first three predictions for the given set with the probabilities in brackets. 

Phrase 1. Prediction 2. Prediction 3. Prediction 
Name des Patienten 
(name of the patient) 

Patient surname 
(25.04%) 

Medication name (18.32%) 
Patient forename 
(17.45%) 

Krebs der Niere  

(cancer of the kidndy) 

Kidney cancer 

(24.84%) 
Subject Diary (17.16%) 

Malignant neoplasm 

of kidney (16.12%) 

Krebs der Leber 

(cancer of the liver) 

Malignant Placental 

Neoplasm (21.20%) 

Secondary malignant 

neoplasm of liver (18.50%) 

Liver reconstruction 

(17.72 %) 

Blut (blood) Blood (19.38%) Blood in Urine (17.81%) 
Coagulation Process 

(17.21%) 

Table 2. The table presents the results of the conducted experiments. We trained models with four different 
configurations: three different layer depths of the LSTM layer and additionally with pre-trained GloVe 

embeddings for the best model configuration. The experiments were conducted in each configuration with and 

without the augmented data. Here, T1, T3, T5, T10 signifies whether the ground truth class was within the first, 

first three, first five, or first ten most likely predictions. The best results were achieved by the two-tier BiLSTM.  

Experiment T1 Acc. T3 Acc. T5 Acc. T10 Acc. 

BiLSTM w/o Augmentation 63.77 70.16 71.39 72.69 

BiLSTM w/ Augmentation 67.04 72.66 73.9 75.44 

2BiLSTM w/o Augmentation 64.63 70.95 71.2 73.27 

2BiLSTM w/ Augmentation 67.27 72.85 74.23 75.63 
2BiLSTM w/o Glove w/o Aug. 60.09 66.16 67.34 68.76 

2BiLSTM w/ Glove w/o Aug. 65.09 70.56 72 73.64 

3BiLSTM w/o Augmentation 63.46 69.17 70.42 71.53 

3BiLSTM w/ Augmentation 66.23 71.45 72.66 74.03 

4. Discussion 

The specificity of the proposed model resides in the processing and semantic annotation 

of German metadata - to our knowledge, there is no comparable model. The accuracy of 

the predictions is sound, although there is potential for improvement. In addition, only a 

fraction of all UMLS Codes were included in the data set, so not all concepts can be 

predicted. For example, the concept “liver cancer” was not in the dataset, so the network 

recognized liver and cancer distinctly, but the joining concept was unknown, as seen in 

Table 1. The use of augmented data showed an improvement in accuracy in all 

experiments. Therefore, further augmentation sources should be used in subsequent 

studies to enhance the training dataset. The use of pre-trained GloVe embeddings should 

allow a better understanding of synonyms. Nevertheless, the overall accuracy was worse. 

One possible explanation is that most keywords in the phrases are specialized medical 

vocabularies and are often not included in models pre-trained on general text corpora. 

Future work will consider and further refine training on the target GloVe embedding 

dataset. Another possibility is the use of newer attention-based models such as 
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Transformer, but there is currently no biomedical Transformer model for the German 

language. One inaccuracy in general remains for the process of data integration using the 

trained model: the predictions are based on previous annotations. Misclassifications then 

carry over into subsequent processing steps. However, the MDM portal can also draw on 

great prior work in terms of consistency and interrater variability [11], so that the use of 

the model can be recommended. 

5. Conclusions 

This work is intended as a proof-of-concept to show that increasingly performant 

machine learning tools can already play an important role in data integration - effectively 

a stage before the initial provision of curated research data. The proposed model can 

usefully support annotators to enable new datasets for secondary research and hopes to 

be an impetus for future work in the area, such as integrating the UMLS graph knowledge 

into the network.  
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