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Abstract: Artificial Intelligence (AI) technologies are increasingly being used to 
enhance kidney transplant outcomes. In this review, we explore the use of AI in 
kidney transplantation (KT) in the existing literature. Four databases were searched 
to identify a total of 33 eligible studies. AI technologies were used to help in 
diagnostic, predictive and medication management purposes for kidney transplant 
patients. AI is an emerging tool in KT, however, there is a research gap exploring 
the limitations associated with implementing AI technologies in the field. Research 
is also needed to recognize clinical educational needs and other barriers to promote 
adoption and standardization of care for KT patients amongst clinicians. 
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1. Introduction 

About 9.1% of the world’s population suffer from chronic kidney failure requiring 

dialysis or a kidney transplant [1]. Kidney transplantation (KT) is the preferred 

intervention as it allows patients a better quality of life while being cost effective 

compared to long-term dialysis [2]. The development and use of artificial intelligence 

(AI) in medicine, and clinical applications is evolving in several fields, including the 

field of kidney disease and KT [3-6]. AI appears to be a promising tool in healthcare and 

clinical decision support, providing personalized diagnostics, therapeutic solutions, and 

predictions of future events such as hospitalization and patient’s survival [3]. 

A review of collective evidence exploring the use of AI in KT is limited. We came 

across two reviews; Burlacu et al. (2020), reviews AI in nephrology, including in KT [6]. 

The search for the review was conducted in August 2019, omitting evidence related to 

KT during the pandemic. The review also does not report the types of AI technologies 

and algorithms observed. Seyahi et al. (2021) also explores AI used in KT [7]. The 

authors use only one data source to conduct their study and solely address AI 

applications. Our scoping review cover these gaps while combining the latest evidence 

to help keep clinicians informed and recognize future research opportunities. 

The aim of this scoping review is to explore: 1) How is AI being used in KT? and, 

2) What are the characteristics of AI technologies utilized for kidney transplant 

purposes? 
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2. Methods 

The scoping review is in line with PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses) Extension for Scoping Reviews guideline [8]. We searched 

four databases between 1st till 5th March 2021. While manually checking citations on 

Google Scholar, only the first 40 citations were relevant to the subject of interest. Hence, 

the top 40 hits are included. The search engine is known to retrieve many hundreds of 

citations in order of relevance to the search terms. This method can be seen in another 

scoping review [9]. Table 1 displays details of the search strategy used. 

Only primary studies conducted in English between the years 2018 till 2021 were 

included in this scoping review. Three reviewers independently screened the articles 

using Rayyan System Inc. In case of conflict, discussion was held among reviewers to 

come to a mutual consensus. The reviewers independently extracted data using a data 

extraction form. The findings are synthesized narratively, then classified and described 

in terms of their purpose and characteristics.  

3. Results 

Only 32 studies met the criteria and are included in this review. One additional study was 

added by backward citation of the reference list of the included studies. Most studies 

were published between 2020-2019 (n=28) and conducted in the United State of America 

(n =11). Table 2 displays the common AI branch and models observed in the studies. 

The use of AI technologies for KT found in included studies can be categorized into 

three – diagnoses, prediction, and prescription. 

3.1 AI to Diagnose Kidney Transplant Patients 

A total of 18 studies investigated usefulness of AI models for diagnostic purposes in 

kidney transplant patients [10,11,20-27,12-19]. For example, Kanzelmeyer et al. (2019) 

investigated use of AI in early diagnoses of chronic active antibody mediated rejection 

(cABMR) in kidney transplant patient [23]. Another example, study by Shehata et al. 

(2019) used AI to distinguish between diagnoses of non-rejection and acute rejection in 

transplant patients [19]. Majority of the models were based on RF [20,21,24,25] and 

SVM (Support Vector Machine) [18,21,23] models. Most data sources used to train and 

test the AI models were based on clinical setting such as hospitals (n =12). Clinical data 

such as blood, and biopsies (n =13) were the most used data type. 

3.2 AI as a Prediction Tool in Kidney Transplantation 

A total of 12 studies used AI as a prediction tool [28,29,38,39,30-37]. Algorithms and 

datasets were used to predict survival of graft tissue, rejection, and delayed graft 

function. Studies also explored AI facilitated prediction for critical clinical decisions of 

weighing benefits of receiving an available kidney over waiting for a ‘better offer’. 

Information of patients and donors are used to predict suitable match and weigh risks of 

undergoing the procedure or receiving a certain quality of kidney. 
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Table 1. Search Strategy  

Database/ # Citations                                                         Search Strategy 

Embase 
349 Citations 

('artificial intelligence'/exp OR 'machine learning'/exp OR 'deep learning'/exp 
OR 'neural network*' OR 'supervised learning'/exp OR 'unsupervised 
learning'/exp OR 'natural language' OR 'data mining'/exp) AND ('kidney 
transplant*':ti,ab,kw OR 'renal transplant*':ti,ab,kw OR 'kidney 
graft*':ti,ab,kw OR 'kidney allograft':ti,ab,kw) 

CINAHL 
25 Citations 

('kidney transplant*' OR 'renal transplant*' OR 'kidney graft*' OR 'kidney 
allograft*') AND ('artificial intelligence' OR 'machine learning' OR 'deep 
learning' OR 'neural network*' OR 'supervised learning' OR 'unsupervised 
learning' OR 'natural language' OR 'data mining') 2018 – 2021

Pubmed 
91 Citations 

("Artificial intelligence"[Title/Abstract] OR "Machine 
learning"[Title/Abstract] OR "Deep learning"[Title/Abstract] OR "Neural 
network*"[Title/Abstract] OR "Supervised learning"[Title/Abstract] OR 
"Unsupervised learning"[Title/Abstract] OR "Natural language 
processing"[Title/Abstract] OR "Data mining"[Title/Abstract]) AND ("Kidney 
Transplant*"[Title/Abstract] OR "Renal Transplant*"[Title/Abstract] OR 
"Kidney Graft*"[Title/Abstract] OR "Kidney Allograft*"[Title/Abstract]) 

Google Scholar 
40 Citations 

(“Kidney Transplant*” OR “Renal Transplant*” OR “Kidney Graft* OR 
“Kidney Allograft*”) AND ("Artificial intelligence" OR "Machine learning" 
OR "Deep learning" OR "Data Mining")

Table 2. Most common features of AI-based techniques used for kidney transplantation 

Features Studies (N=33) 

AI branch a 

Deep Learning 8
Machine Learning 25
Natural Language Processing 1

AI models / algorithm b 

Random Forest 11
Logistic Regression 6
Gradient Boosting 4
Support Vector Machine 4
Artificial Neural Network 3

a Numbers do not add up as some studies were based on more than one AI branch 

b Numbers display only the most common models/algorithm used. 

3.3 AI used as a Prescription Tool in Kidney Transplantation 

AI techniques were used to manage appropriate dosage of immunosuppressants and other 

medications [40-42]. The models used included fuzzy logic [42], RF [40], and ANN [41]. 

All studies used clinical setting as the form of data to test and train their models. Genetic 

data was used in 2 studies. AI was used to manage immunosuppressant dosage to 

improve efficiency in KT patients. One study used a different approach by using ANN 

to understand the relationship between genetic factors and tacrolimus dose [41]. 

5. Discussion 

With the increasing adaption of electronic health record, there is an abundance of patient 

data providing AI technologies the platform to improve multiple aspects of KT care. 

Clinicians and their input are a big part of integrating any system to enhance the health 

experience of patients, however, none of our included studies studied the clinician’s 

perspective of using AI or the challenges and the ethics that need to be considered. 

Moreover, clinicians may not fully understand the technical explanations of these 
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algorithms or performance metrices. Training programs and other resources catered 

towards healthcare providers are necessary. AI could be the answer to the shortage of 

solid organs as it provides the answer to many of the complications and challenges 

attached to it. Therefore, proactiveness to include stakeholders is needed, while also 

exploring barriers and facilitators of integrating AI technologies in the clinical setting. 

5. Conclusion 

Kidney transplantation is a complex intervention requiring patients and clinicians to 

undergo multiple processes and critical decision making. AI is proving to be an important 

tool to support clinicians and patients to make the best decision for their needs. AI is 

being used for diagnoses, making predictions, and prescribing personalized care plans 

for KT patients. More research is required to promote AI adoption within the field.  
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