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Abstract. Emergency department is a key component of the health system where 
the management of crowding situations is crucial to the well-being of patients. This 
study proposes a new machine learning methodology and a queuing network model 
to measure and optimize crowding through a congestion indicator, which indicates 
a real-time level saturation. 
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1. Introduction 

Emergency department (ED) is a key component of the health system that acts as a safety 

net of healthcare for the population around. With its unscheduled nature and its ease to 

be accessed, it is subject to real-time crowding phenomena with serious consequences 

on patients’ health and on doctor and nurses working conditions (1). Its causes have been 

related to the input of ED, that is patient arrivals volumes, the throughput with 

examination services time performances and output with downstream blocking of 

patients due to shortage of hospitalization beds. 

ED crowding is a complex problem not only regarding its causes but also regarding 

its definition and the way it is quantified as illustrate the many ED crowding scores 

existing in the literature such as the EWIN, READI, SONET and NEDOCS (2,3). They 

each try to quantify the stress that patients’ healthcare demand put on the ED system in 

comparison to the availability of resources. Especially, the National Emergency 

Department Overcrowding Score (NEDOCS) has been designed to correlate the most 

with the empirical real-time evaluation of ED crowdedness by field experts using a linear 

regression on 5 key variables (4). However, all these scores do not necessarily better than 
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global mean occupation to predict consequences of crowding and the variables they use 

are not always available in data records (3,5). As such, crowding can be seen mainly as 

an occupation level problem which is in turn a direct consequence of saturation periods 

where the rate of patient arrivals is greater than the rate of departures. 

Queuing networks models are well suited to model these crowding events as they 

can capture all these metrics. Their design differs mainly on four criterions which are 

their granularity, the queuing mechanisms with the type of servers involved, the type of 

variables modeled to characterize the service processes and the technique of estimation 

for arrivals and services time or rate variables. The model granularity is linked to the 

number of stations and patient pathways and can go from one station model (6) to 

complex detailed models with the distinction of each action and processes (2,7,8). The 

servers of the stations can represent resources such as beds, nurses, and doctors (8), or 

be more abstract with a single server or infinite servers (6,9). The services processes can 

also be seen either as a succession of services times (2,7,8) or as a point process with a 

variable intensity of service rate (6,9). Their end goal is either to predict future crowding 

values using data-driven approach (3,6), or to optimize crowding with theoretical model 

which takes into account the effect of decision variables such as staff planning (8). 

However, no model exists yet to both forecast and optimize crowding at the same time 

which could provide better and more robust planification and decision-making strategies 

that could in-turn be adapted given the crowding context and the time scale considered.  

The aim of this study was to propose a new methodology perspective on crowding 

measurement, forecasting and optimization using data-driven queuing approach as well 

as an original congestion indicator to measure saturation. 

2. Methods 

2.1. Design and Definition of congestion 

We conduct a large retrospective observational study based on emergency department 

record during 2017 to 2019. Emergency department is a service system which can be 

captured by a mathematical model on a discrete space with continuous time using an 

arrival process �(�)  and a departure process �(�)  which describe, respectively, the 

number of arrivals and departures of the system since an initial period � = 0. Instead of 

focusing only on the occupation level �(�) = �(�) − �(�), the present study focuses on 

an original congestion measure: 

�(�) =
�(���� − �(� − ℎ))

�(	��� − 	�� − ℎ�)
 ∀� ∈ ℝ�, � > ℎ    (1) 

The congestion �(�) uses a ratio comparison of arrivals to departures on a time window 

[� − ℎ, �] and with regulating functions �(. ) and �(. ) which are both chosen to ensure a 

local and stable indicator where  ���� > 1 indicates local system saturation. 

2.2. Queuing methodology 

To model this new indicator, the stochastic arrival and departure processes �(�) and 

�(�) need to be fully modelized. To achieve this goal, this study proposes an ED queuing 

network using a set of elementary stations 	 ∈ 
, with their arrivals ��(�) and departures 
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����� processes, including an external environment indexed by 0 and set of stations � ∈

ℱ ⊂ ���� . For practical purpose, a discretization of space is introduced with 


���, � � ��� � 
�� � �� � 
��� (same for �) and � ∈ ℝ�  the length of time interval 

unit. The arrival processes of each station are connected to the departure of others with 

transition processes ���,��
, ��, �� ∈ �  and governed by the transition probabilities 

���,�����, � � ���. As illustrated in Figure 1, the considered queuing network is a 7 station 

ED patient flow model with 2 tracks, a short circuit for patients with low-acuity health 

problems and a long circuit for the others. The patients follow a classic ED process of 

nurse triage, doctor initial examination, supplementary examinations and a holding 

before leaving the ED for home or hospitalization in most cases. 

 

Figure 1. General ED Patient Flow model (LC: Long Circuit, SC: Short Circuit) 

The final goal of the queuing approach is to model the distributions ��
����, � � �� �

��, �������, � � �� � ��, ∀� ∈ ℕ, ∀� ∈ ℱ, ∀� ∈ �� � ��, � ∈ ℕ� . The proposed 

modelization considers each of the 7 departure processes of the ED queuing network as 

Coxian processes described by a local departure rate function whose behavior is inferred 

using past information on service performances and current information about the 

number of patients in the ED and the number of triage nurses and doctors in long and 

short circuits (10). The obtained queuing model can then be simulated evaluate, forecast, 

and optimize crowding using notably the original congestion measure. This study was 

performed in compliance with the national legislation regarding epidemiological studies 

(Declaration N° 2203674v0). Since the study was wholly observational and only used 

anonymized data (patient names were not recorded), neither ethics approval nor a 

specific written informed consent from participants were required under French law as a 

retrospective database study. 

3. Results 

The data involved for the evaluation of the method come from the ED of Troyes Hospital 

in Eastern France during the year 2017 to 2019 with a focus on 2019. It is the largest 

hospital in the Aube Department of France which has a population of 310,000 inhabitants 

and a medical density of 234.1 physicians per 100,000 inhabitants. In 2018, there were a 

total of 62,082 ED visits corresponding to an average use rate of 250 to 330 visits per 

1,000 inhabitants within the hospital’s service area.  

3.1. Congestion characteristic of the ED of Troyes 

For each 4-hour period of the day of 2019, the Table 1 describes key crowding metrics 

with the mean 2h-lag number of arrivals (A), the mean 2h-lag number of departures (D), 

the mean occupation level (L) and the mean 2h-lag congestion (�̅) (h=2). To keep a stable 

finite congestion, the regulation functions add one arrival and one departure event. 
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Table 1. Key ED crowding metrics for Troyes ED in 2019 

Hour period 0h-4h 4h-8h 8h-12h 12h-16h 16h-20h 20h-24h 0h-24h 

L 40.7 24.4 16.2 26.7 42.7 45.4 32.7 

�̅ (~A/D) 
0.9  

(~17.2/21.3) 

0.6 

(~9.0/17.1)

0.9 

(~5.4/7.8)

2.4 

(~16.0/7.9)

1.6 

(~21.8/15.0)

1.0 

(~21.0/21.3) 

1.2 

(~15.1/15.1) 

3.2. Queuing model parameters and validity 

The first and most important step of the queuing network development which is to model 

the departure process of each station has been undertaken. The departures rates are 

currently modeled using logistic regression on the probability of at least one departure 

on 1 second intervals which is taken as a polynomial function of the variables described 

in the method section. Figures 2 and 3 show the estimated departures rates per hour of 

the model for the initial examination stations (EXAMCLI for long circuit and EXAMCCI 

for short circuit) for short circuit depending on the current number of medical actors 

(LM) and patients (LP) present. 

 
Figure 2 and 3. Estimated rates of departures 

Although the forecasting performances of congestion have not yet been evaluated, the 

models have been checked for the adequation between mean occupation level observed 

over the year 2019 (L) and the one produced by simulation ( L� ) of each station 

independently considering their arrival process as known using the mean of 10 

simulation replications. 
 

Table 2. Simulation of ED Troyes 2019 crowding occupation, bias fit 

Station T (1) I.E LC (2) S.E LC (3) H LC (4) I.E SC (5) S.E SC (6) H SC (7) Sum 

Bias:  L�  -L 
3.3-3 = 0,3 

 (11.4%) 

4.4-4.1=0,3  

(8.7%) 

11.2-11.2=0

 (0.7%)

2.3-2.3=0 

(-1.5%)

5.5-5 = 0.5 

(9.6%)

5.6-5.7 =0.1

(-1.2%)

1.7-1.5 = 0.2 

(14.0%) 

34-32.7 = 1.3 

(3.7%) 

4. Discussion and Conclusion 

The queuing model approach for forecasting and optimization of saturation is an original 

and promising approach. As Table 1 illustrates most of the crowding accumulation ED 

happens during the beginning of the afternoon (12h-16h) where the mean 2h lag 

congestion is the highest at 2.4 whereas the peak occupation is attained during the period 

20h-24h. The lag of 2 hours has been chosen to give information as local as possible on 

the saturation as well as to obtain enough events whose mean varies here from 13.2 

events (8h-12h) to 42.3 (20h-24h). The results of the queuing models show that they can 

adequately capture the service performance variations based on the number of patients 

and of medical actors. 
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Despite these current promising results, the model still needs to be analyzed further 

to show its performances to forecast crowding in terms of congestion and occupancy 

using adequate error metrics and compare them to the literature on forecasting ED 

occupancy. These forecasting performances are still under encouraging investigation. In 

the meantime, this study already shows an adequate representation of ED performances 

and is suitable for simulation-optimization purposes with a 3.7% relative bias error on 

the total ED occupation, not considering yet the modelization of arrivals in the ED and 

the transitions models. Furthermore, the queuing design approach can be easily adapted 

to suit any ED, and even any service system, as long as arrival and departure datetimes 

are available for forecasting purposes and staff planning or other decision variables can 

be extracted for optimization. It will form the basis of a management tool to detect future 

congestion situation in the short and long term and propose solutions toward optimizing 

it. Staffing planification will form the key strategy of this optimization (11), and will be 

completed with other complementary strategies. These strategies will consider 

reorganization of the triage process (12), and the redirection of non-emergent cases (13), 

toward alternative unscheduled primary care services. 

To conclude, our approach explores new methods with current emergency record 

data to drive healthcare system in real time. 
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